Uniwersytet Warszawski - Centralny System Uwierzytelniania
Strona główna

Wstęp do matematyki (potok I) 1000-111bWMAa
Wykład (WYK) Semestr zimowy 2021/22

Informacje o zajęciach (wspólne dla wszystkich grup)

Liczba godzin: 30
Limit miejsc: (brak limitu)
Zaliczenie: Egzamin
Metody i kryteria oceniania:

Wykład

Odbywa się w czwartki o 8:30 równolegle w dwóch grupach. Każdy student może wybrać wykład, na który przychodzi, niezależnie od grupy, do której jest zapisany.

Równoległe wykłady będą różne, ale pod względem treści będą miały istotną część wspólną.

Dodatkowo prowadzony będzie kurs na wydziałowym Moodle’u, gdzie będą się pojawiać niektóre materiały związane z wykładami. Będzie tam też funkcjonować forum z pytaniami i odpowiedziami. Studenci mają obowiązek dołączyć do tego kursu.

Na kursie na Moodle’u w poniedziałek po każdym roboczym czwartku, z wyjątkiem ostatniego, będzie się pojawiać test odnoszący się do części wspólnej ostatniego i poprzednich wykładów. Test będzie otwarty do dnia pojawienia się kolejnego testu, a w przypadku ostatniego testu do dnia egzaminu.

Ćwiczenia i prace domowe

Obecność na ćwiczeniach jest obowiązkowa. Szczegółowe zasady w sprawie dopuszczalnej liczby nieobecności ustalają prowadzący ćwiczenia.

Każdy prowadzący ćwiczenia ma do przyznania punkty za aktywność na zajęciach, wliczające się w sumę punktów, na której podstawie wystawiona będzie końcowa ocena (patrz niżej).

Prowadzący ćwiczenia będą zadawać prace domowe podzielone na serie, w których sumarycznie znajdzie się 30 zadań (np. 10 serii po 3 zadania). Oddanie rozwiązania następuje poprzez wgranie odpowiednich plików przez serwis Moodle’a przed terminem kolejnych ćwiczeń.

Nad zadaniami można myśleć w maksymalnie czteroosobowych zespołach, ale każdy student w pełni samodzielnie redaguje przesyłane rozwiązanie. Student ma prawo oddać swoje samodzielnie spisane rozwiązanie tylko wtedy, jeśli całkowicie je rozumie. Studenci, którzy zdecydowali się myśleć w zespołach, podają skład zespołu w swojej pracy domowej. Nie zwalnia to z obowiązku jednoosobowego i samodzielnego spisania rozwiązania przez każdego ze studentów.

Zachęcamy do oddawania prac domowych zredagowanych w LateXu, co będzie wymagało przesłania pliku .tex oraz pliku .pdf. Studenci, którzy w ten sposób oddadzą większość prac domowych, na koniec semestru otrzymają dodatkowy 1 punkt. W kursie na Moodle’u pojawią się materiały do samodzielnej nauki używania LateXa.

Oddane prace będą podlegać automatycznej kontroli antyplagiatowej. W przypadku stwierdzenia rażącej niesamodzielności pracy, punkty zostaną wyzerowane, a wcześniejsze i późniejsze prace domowe danego studenta ręcznie zweryfikowane pod tym kątem.

Prace będą sprawdzać graderzy (wyznaczeni studenci wyższych lat), korzystając z serwisu Moodle, którzy każdą pracę ocenią i każde rozwiązanie opatrzą komentarzem. Graderzy też będą elementem dodatkowej kontroli antyplagiatowej. Prowadzący grupę ćwiczeniową w razie wątpliwości zgłoszonych przez gradera może zweryfikować, czy student rozumie swoje rozwiązanie poprzez indywidualną rozmowę ze studentem i od tego uzależnić przyznaną liczbę punktów.

Konsultacje

Każdy prowadzący ćwiczenia prowadzi konsultacje dla studentów swojej grupy w ustalonym terminie raz na tydzień lub po umówieniu się ze studentami mailowo. Konsultacje mogą odbywać się on-line.

Kolokwium

Odbędzie się w czwartek 9.12,o godz. 14:15 lub 14:30 i będzie się składać z 3 lub 4 zadań. Kolokwium będzie trwało nie dłużej niż 120 min.

Egzamin zerowy

Studenci, którzy przed ostatnim tygodniem zajęć zdobędą co najmniej 90% punktów sumarycznie z kolokwium, testów zamkniętych przed 21.01 oraz prac domowych sprawdzonych przed 21.01, zostaną zaproszeni na egzamin ustny i w przypadku pozytywnego jego wyniku będą zwolnieni z egzaminu w sesji.

Egzamin w pierwszym terminie

Wszyscy studenci (z ewentualnym wyjątkiem osób, których dotyczą szczególne sytuacje opisane w Regulaminie Studiów i zasady ustalone przez prowadzącego ćwiczenia związane z dopuszczalną liczbą nieobecności) są dopuszczeni do egzaminu.

Egzamin będzie się składał z:

- części testowej,

- części zadaniowej.

W szczególnych (rzadkich) przypadkach wykładowca może dodatkowo zaproponować egzamin ustny, którego wynik może zmienić ocenę wystawioną na podstawie sumy zdobytych punktów (patrz niżej). Na dopuszczenie do egzaminu ustnego może mieć wpływ opinia prowadzącego ćwiczenia.

Egzamin w drugim terminie

W terminie poprawkowym ocenę wyznacza się na podstawie egzaminu (część testowa i zadaniowa) oraz ewentualnie egzaminu ustnego.

Ewentualny tryb zdalny

W przypadku przejścia nauczania na tryb zdalny zasady zaliczania zostaną zmodyfikowane. Zmiana może w szczególności dotyczyć formy egzaminu.

Podsumowanie punktacji

kolokwium

30

egzamin zad

30

egzamin test

20

prace domowe

10

oddanie ponad połowy prac domowych w teXu

1

testy

6

punkty ćwiczenia

3

Grupy zajęciowe

zobacz na planie zajęć

Grupa Termin(y) Prowadzący Miejsca Liczba osób w grupie / limit miejsc Akcje
1 każdy czwartek, 8:30 - 10:00, sala 3180
Leszek Kołodziejczyk 61/84 szczegóły
2 każdy czwartek, 8:30 - 10:00, sala 4420
Michał Korch 70/84 szczegóły
Wszystkie zajęcia odbywają się w budynku:
Gmach Wydziału Matematyki - Banacha 2
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
kontakt deklaracja dostępności USOSweb 6.8.0.0-931e56a2a (2022-09-30)