Uniwersytet Warszawski - Centralny System Uwierzytelniania
Strona główna

Analiza matematyczna i układy dynamiczne

Informacje ogólne

Kod przedmiotu: 1000-1L22AMUD
Kod Erasmus / ISCED: 11.1 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0541) Matematyka Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Analiza matematyczna i układy dynamiczne
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Proseminaria na matematyce
Punkty ECTS i inne: 2.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: angielski
Rodzaj przedmiotu:

proseminaria

Skrócony opis:

Celem proseminarium jest:

1) wprowadzenie w wybrane zagadnienia analizy matematycznej, które nie były omawiane podczas kursowego wykładu,

2) wprowadzenie w podstawowe zagadnienia układów dynamicznych i teorii ergodycznej.

Pełny opis:

Układy dynamiczne i związana z nimi teoria ergodyczna to ważne dziedziny współczesnej matematyki. Powstały przy badaniach zachowania rozwiązań układów równań różniczkowych o skomplikowanych rozwiązaniach (np. zagadnienie trzech ciał). Matematycy iterowali też funkcje wtedy, gdy chcieli znaleźć przybliżenia pierwiastków wielomianu, np. przy pomocy metody Newtona. Najogólniej mówiąc, chodzi tu o badanie ewolucji różnych układów w czasie, ze szczególnym uwzględnieniem własności stochastycznych oraz geometrii zbiorów granicznych i niezmienniczych. Wykorzystywane są metody z wielu gałęzi matematyki (m.in. rachunku prawdopodobieństwa, analizy funkcjonalnej, analizy zespolonej, topologii algebraicznej). Układy dynamiczne znajdują liczne zastosowania w naukach przyrodniczych.

W Polsce tą problematyką zajmuje się od wielu lat z sukcesem kilka grup badawczych, m.in. na naszym Wydziale, oraz w IMPAN, na Politechnice Warszawskiej, a także na Uniwersytetach we Wrocławiu, Toruniu, Krakowie, Olsztynie.

W ramach proseminarium zamierzamy przedstawić podstawowe idee i pojęcia układów dynamicznych i teorii ergodycznej (m.in. zbiór graniczny, stabilność, atraktor, repeller, entropia, ergodyczność) ilustrując je licznymi, elementarnymi przykładami (homeomorfizmy okręgu, automorfizmy torusa, dynamika ułamków łańcuchowych, fraktale, zbiory Julii). Będziemy używać wyłącznie metod dostępnych dla studentów po drugim roku studiów.

Literatura:

R. Devaney, An introduction to chaotic dynamical systems, third edition, CRC Press, Boca Raton, 2022.

S. Fomin, I. Kornfeld, J. Sinaj, Teoria ergodyczna, Państwowe Wydawnictwo Naukowe, Warszawa, 1987.

I. Gelfand, S. Fomin, Rachunek wariacyjny, Państwowe Wydawnictwo Naukowe, Warszawa, 1975.

B. Hasselblatt, A. Katok, A first course in dynamics, Cambridge University Press, Cambridge 2003.

M. Pollicott, M. Yuri, Dynamical systems and ergodic theory, London Mathematical Society Student Texts, 40, Cambridge University Press, Cambridge, 1998.

F. Przytycki, M. Urbański, Conformal fractals. Ergodic theory methods, London Mathematical Society Lecture Note Series 371, Cambridge University Press, Cambridge, 2010.

C. Robinson, Dynamical systems. Stability, symbolic dynamics and chaos, Second edition, CRC Press, Boca Raton, 1999.

W. Szlenk, Wstęp do teorii gładkich układów dynamicznych, Państwowe Wydawnictwo Naukowe, Warszawa, 1982.

P. Walters, An introduction to ergodic theory, Springer-Verlag, New York-Berlin, 1982.

Efekty uczenia się:

Zdobycie podstawowej wiedzy o układach dynamicznych i teorii ergodycznej. Umiejętność analizy prostych układów dynamicznych pod względem geometrycznym i stochastycznym.

Metody i kryteria oceniania:

Regularna obecność na zajęciach. Przygotowanie i wygłoszenie co najmniej jednego referatu w ciągu każdego semestru.

Zajęcia w cyklu "Rok akademicki 2022/23" (w trakcie)

Okres: 2022-10-01 - 2023-06-18
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć:
Proseminarium, 60 godzin więcej informacji
Koordynatorzy: Krzysztof Barański, Marcin Bobieński, Anna Zdunik
Prowadzący grup: Krzysztof Barański, Marcin Bobieński, Anna Zdunik
Lista studentów: (nie masz dostępu)
Zaliczenie: Zaliczenie
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
kontakt deklaracja dostępności USOSweb 6.8.1.0-65ff8df66 (2023-01-24)