Controls on Sandstone Diagenesis
Informacje ogólne
Kod przedmiotu: | 1300-WCSDP |
Kod Erasmus / ISCED: | (brak danych) / (brak danych) |
Nazwa przedmiotu: | Controls on Sandstone Diagenesis |
Jednostka: | Wydział Geologii |
Grupy: | |
Punkty ECTS i inne: |
(brak)
|
Język prowadzenia: | angielski |
Rodzaj przedmiotu: | fakultatywne |
Skrócony opis: |
(tylko po angielsku) Controls on Sandstone Diagenesis is an intensive 5-day workshop focused on the aspects related with sandstone diagenesis, including: sediment factory, dispersal and deposition; sediment composition and diagenesis; the diagenetic pathway from sediment to rock; petrographic analysis; integrated compositional data analysis, diagenetic modelling workshop. |
Pełny opis: |
(tylko po angielsku) I. Sediment factory, disposal and deposition (L. Caracciolo, W.A. Heins) 1. External forcing controls on sediment properties 2. Modelling of controlling factors for property prediction 3. Depositional facies controls on early diagenesis: texture and composition 4. Accounting for genetics in Hydrocarbon exploration 5. Using genetics to select analogues II. Sediment composition and diagenesis (L. Caracciolo, W.A. Heins, G.J. Weltje) 1. Sediment compositional modelling as key to controlling factors 2. Compositional modelling of geochemical data and application to diagenesis 3. Integrated core analysis for reservoir quality prediction 4. Low-temperature (bio)chemical processes during and shortly after burial 5. Chemical and mechanical processes during burial III. Following the diagenetic pathway from sediment to rock (L.M. Bonell, R.H. Lander) 1. Sandstone diagenesis and reservoir quality: an overview 2. Petrography, petrology, and petrophysics 3. Compaction: mechanisms of bulk volume loss 4. Non-quartz cements and secondary porosity 4. Clay minerals: friend or foe? 5. Quartz cementation: controls and predictability 6. Reservoir quality prediction: approaches and examples IV. Petrographic analysis (R.H. Lander, L.M. Bonell) 1. Measuring porosity: dealing with the third dimension 2. Common cement types 3. Tips for differentiating replacement from cement 4. Grain size and sorting 5. Measuring grain coat coverage V. Integrated compositional data analysis and diagenetic modelling workshop (L. Caraciollo, W.A. Heins, R. Lander, L. Bonell, G.J. Weltje, P. Vermeesch, D. Palmowski) 1. Compositional data analysis (data transformation, exploration and processing) 2. Data processing techniques 3. Case study: core data analysis and integration of petrographic,. Geochemical, mineralogical and petrophysical data 4. Diagenetic modelling. |
Literatura: |
(tylko po angielsku) Ajdukiewicz, J. M., & Lander, R. H. (2010). Sandstone reservoir quality prediction: The state of the art. AAPG bulletin, 94(8), 1083-1091. Beard, D. C., & Weyl, P. K. (1973). Influence of texture on porosity and permeability of unconsolidated sand. AAPG bulletin, 57(2), 349-369. Berger, G., Lacharpagne, J. C., Velde, B., Beaufort, D., & Lanson, B. (1997). Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences. Applied Geochemistry, 12(1), 23-35. Busch, B., Hilgers, C., Lander, R. H., Bonnell, L. M., & Adelmann, D. (2018). Reservoir quality and burial model evaluation by kinetic quartz and illite cementation modeling: Case study of Rotliegendes, north Germany. AAPG bulletin, 102(2), 293-307. Folk, R. L. (1980). Petrology of sedimentary rocks. Hemphill publishing company. Howarth, R. J. (1998). Improved estimators of uncertainty in proportions, point-counting, and pass-fail test results. American Journal of Science, 298(7), 594-607. Lander, R. H., & Walderhaug, O. (1999). Predicting porosity through simulating sandstone compaction and quartz cementation. AAPG bulletin, 83(3), 433-449. Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A., & Meunier, A. (2002). Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay minerals, 37(1), 1-22. Nadeau, P. H., Wilson, M. J., McHardy, W. J., & Tait, J. M. (1985). The conversion of smectite to illite during diagenesis: evidence from some illitic clays from bentonites and sandstones. Mineralogical Magazine, 49(352), 393-400. Nielsen, M. T., Olivarius, M., Weibel, R., Mathiesen, A., Tremosa, J., Bonnell, L., & Nielsen, L. H. Geothermal reservoir quality prediction from diagenesis modelling. Panda, M. N., & Lake, L. W. (1994). Estimation of single-phase permeability from parameters of particle-size distribution. AAPG bulletin, 78(7), 1028-1039. Pichler, H., & Schmitt-Riegraf, C. (1997). Rock-forming minerals in thin section. Springer Science & Business Media. Sachsenhofer, R. F., Rantitsch, G., Hasenhüttl, C., Russegger, B., & Jelen, B. (1998). Smectite to illite diagenesis in early Miocene sediments from the hyperthermal western Pannonian Basin. Clay Minerals, 33(4), 523-537. Walderhaug, O. (2000). Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjørn field, northern North Sea. AAPG bulletin, 84(9), 1325-1339. |
Efekty uczenia się: |
(tylko po angielsku) On completion of the course the student has knowledge about clastic sediment diagenesis and its applicability in basin analysis, knows the methods of modelling data for predicting reservoir quality, understands the needs for precise core analysis in hydrocarbon exploration. |
Metody i kryteria oceniania: |
(tylko po angielsku) Participation in workshops and exercises. Poster presentation based on a case study. |
Praktyki zawodowe: |
(tylko po angielsku) not applicable |
Właścicielem praw autorskich jest Uniwersytet Warszawski.