Serwisy internetowe Uniwersytetu Warszawskiego Nie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Statystyka dla MSEM

Informacje ogólne

Kod przedmiotu: 1000-115ST Kod Erasmus / ISCED: 11.1 / (0541) Matematyka
Nazwa przedmiotu: Statystyka dla MSEM
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Przedmioty obowiązkowe dla III roku matematyki specjalności MSEM
Punkty ECTS i inne: 6.00
zobacz reguły punktacji
Język prowadzenia: polski
Rodzaj przedmiotu:

obowiązkowe

Skrócony opis:

Wykład przedstawia podstawowe pojecia i metody statystyki. Omowione są: charakterystyki populacji i ich próbkowe odpowiedniki, budowa modeli statystycznych w ujęciu częstościowym i Bayesowskim, zagadnienia estymacji parametrycznej i nieparametrycznej, testowanie hipotez statystycznych, regresja, klasyfikacja/dyskryminacja.

Przedmiot tylko dla studentów MSEM

Pełny opis:

Wykład przedstawia w wielkim skrócie podstawowe pojecia i metody statystyki, rozumianej jako nauka o wnioskowaniu na podstawie danych. Nacisk polożony jest na zastosowania i metodologię wnioskowania statystycznego, a nie na zagadnienia o charakterze technicznym.

Niektóre wyniki są podawane bez dowodu lub potraktowane szkicowo. Wykład jest ilustrowany przez prezentacje przykładowych analiz statystycznych.

Omowione są: empiryczne rozkłady prawdopodobieństwa, charakterystyki populacji i ich próbkowe odpowiedniki, budowa modeli statystycznych w ujęciu częstościowym i Bayesowskim, zagadnienia estymacji parametrycznej i nieparametrycznej, testowanie hipotez statystycznych, regresja, klasyfikacja/dyskryminacja.

Literatura:

M. Lavine, "Introduction to Statistical Thought", www.stat.duke.edu/~michael/book.pdf

S. D. Silvey, "Wnioskowanie statystyczne", PWN, 1978.

W. Klonecki, "Statystyka dla inżynierów", PWN, 1999.

Efekty uczenia się:

Wiedza i umiejętności:

1. Zna podstawowe parametry charakteryzujące populację i ich odpowiedniki próbkowe: średnią, wariancję, momenty, odchylenie standardowe, kwantyle. Umie rozróżnić wielkości populacyjne od ich oszacowań na podstawie próbki losowej.

2. Umie budować proste modele statystyczne opisujące zjawiska rzeczywiste. Zna podstawowe parametryczne modele statystyczne, oparte na wykładniczych rodzinach rozkładów prawdopodobieństwa.

3. Umie obliczać estymatory metodą momentów i metodą największej wiarogodności.

Wie, co to jest błąd średniokwadratowy estymatora i umie go obliczać. Umie wybierać estymatory o lepszych własnościach.

Zna Twierdzenie Cramera-Rao. Wie, co to znaczy że estymator jest zgodny. Umie obliczać asymptotyczny rozkład estymatora, jeśli jest to rozkład normalny.

4. Zna pojęcie przedziału ufności i umie obliczać przedziały ufności w standardowych przykładach: w modelu normalnym, dla schematu Bernoulliego, nieparametryczne przedziały ufności oparte na statystykach pozycyjnych.

5. Zna pojęcia związane z zagadnieniem testowania hipotez statystycznych: wie, co to jest hipoteza zerowa, hipoteza alternatywna, test, błąd I rodzaju i II rodzaju, poziom istotności, p-wartość. Umie formułować zagadnienia badawcze w terminach weryfikacji hipotez statystycznych.

6. Zna Lemat Neymana-Pearsona. Umie konstruować testy najmocniejsze dla prostych hipotez i testy jednostajnie najmocniejsze dla rodzin z monotonicznym ilorazem wiarogodności.

7. Zna i umie stosować w prostych sytuacjach praktycznych standardowe testy zgodności, test chi-kwadrat, testy dwupróbkowe.

8. Zna podstawowe pojęcia statystyki bayesowskiej: rozkład a priori, a posteriori, twierdzenie Bayesa. Umie rozróżnić bayesowską interpretację wnioskowania statystycznego od interpretacji częstościowej.

9. Zna zasadniczą strukturę modeli regresji i klasyfikacji statystycznej. Umie wykorzystać próbkę testującą do weryfikacji wniosków otrzymanych na podstawie próbki uczącej.

Kompetencje społeczne:

1. Rozumie znaczenie statystyki matematycznej jako narzędzia

służącego do wnioskowania indukcyjnego.

2. Umie wyjaśnić w zrozumiałym języku sens wnioskowania statystycznego i rolę modeli probabilistycznych w statystyce.

Metody i kryteria oceniania:

Student aktywnie uczestniczy w zajęciach, rozwiązując przygotowane listy zadań. Warunkiem zaliczenia jest uzyskanie oceny pozytywnej z egzaminu/egzaminu poprawkowego. Do liczby punktów uzyskanych na egzaminie dopisywane są punkty z aktywności na ćwiczeniach, proporcjonalnie do natężenia aktywności, nie więcej niż 5 pkt (5 pkt = liczba punktów za jedno zadanie na egzaminie).

Zajęcia w cyklu "Semestr zimowy 2020/21" (zakończony)

Okres: 2020-10-01 - 2021-01-31
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Agnieszka Stępień-Baran
Prowadzący grup: Agnieszka Stępień-Baran
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin

Zajęcia w cyklu "Semestr zimowy 2021/22" (jeszcze nie rozpoczęty)

Okres: 2021-10-01 - 2022-02-20

Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Agnieszka Stępień-Baran
Prowadzący grup: Agnieszka Stępień-Baran
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.