Uniwersytet Warszawski, Wydział Matematyki, Informatyki i Mechaniki - Centralny System Uwierzytelniania
Strona główna

Statystyka

Informacje ogólne

Kod przedmiotu: 1000-116bST
Kod Erasmus / ISCED: 11.1 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0541) Matematyka Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Statystyka
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Przedmioty obowiązkowe dla III roku JSIM - wariant 3M+4I
Przedmioty obowiązkowe dla III roku matematyki
Przedmioty obowiązkowe dla IV roku JSIM - wariant 3I+4M
Strona przedmiotu: https://www.mimuw.edu.pl/~noble/courses/Statistics/
Punkty ECTS i inne: 6.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: polski
Rodzaj przedmiotu:

obowiązkowe

Skrócony opis:

Wykład jest wprowadzeniem do klasycznej statystyki i skupia się na rygorystycznym przedstawieniu statystyki teoretycznej, która stanowi podstawę technik statystycznych. Kurs omawia modele statystyczne danych i ich parametryzację, ze szczególnym uwzględnieniem rodzin wykładniczych. Omówiono metody estymacji parametrów, przedziały ufności, testowanie hipotez oraz ich własności teoretyczne. Uwzględniono modele liniowe Gaussa. Teoria jest stosowana do analizy danych, dopasowywania modeli i wykorzystywania ich do prognozowania.

Alternatywnie możesz wybrać 1000-714SAD o bardziej praktycznym charakterze.

Pełny opis:

Kurs stanowi wprowadzenie do klasycznej statystyki, zajmując się statystyką teoretyczną i zastosowaniami do analizy danych. Tematy to:

1) Modele statystyczne, nieparametryczne, półparametryczne, parametryczne, rozkład empiryczny, test Kołmogorowa-Smirnowa.

2) Parametry i dostateczność: statystyki dostateczne, statystyki minimalne dostateczne, pełne statystyki, twierdzenie o rozkładzie.

3) Rodziny wykładnicze i ich parametryzacje

4) Estymacja parametrów: minimalny kontrast, metoda szacowania równań, maksymalna wiarygodność, metoda momentów, najmniejszych kwadratów. Dywergencja Kullbacka Leiblera, maksymalne prawdopodobieństwo jako minimalny kontrast.

5) Nierówność informacyjna, predyktory liniowe.

6) Estymatory całkowitej dostateczności i UMVU (jednolita minimalna zmienność bezstronna).

7) Asymptotyczne wyniki estymatorów, spójność, metoda Delta.

8) Przedziały ufności: metoda Pivot. Testowanie hipotez: test ilorazu wiarygodności, lemat Neymana Pearsona, współczynnik wiarygodności monotonicznej, twierdzenie Rubina Karlina, wartości p, przedziały ufności przez odwrócenie statystyki testowej.

9) Gaussowskie modele liniowe

10) Test asymptotycznego współczynnika wiarygodności, testy Chi-kwadrat, statystyka Walda, regresja logistyczna.

Istnieją również laboratoria komputerowe (15 godzin), w których stosowane są techniki modelowania za pomocą R.

Umiejętności społeczne

Student powinien rozumieć zasady analizy danych i powinien (przy pomocy R) przeprowadzić testy statystyczne, umieć analizować dane z wykorzystaniem liniowych modeli Gaussa i wykorzystywać te modele do predykcji.

Literatura:

[1] P. Bickel and K. Doksum, Mathematical Statistics: Basic ideas and selected topics, Vol. 1, 2001.

[2] J. Noble, Notatki do wykładu ze Statystyki (ang):

www.mimuw.edu.pl/~noble/courses/Statistics

Efekty uczenia się:

1) Modele statystyczne, nieparametryczne, półparametryczne, parametryczne, rozkład empiryczny, test Kołmogorowa-Smirnowa.

2) Parametry i wystarczalność: wystarczające statystyki, minimalne wystarczające statystyki, pełne statystyki, twierdzenie o rozkładzie.

3) Rodziny wykładnicze i ich parametryzacje

4) Estymacja parametrów: minimalny kontrast, metoda szacowania równań, maksymalna wiarygodność, metoda momentów, najmniejszych kwadratów. Dywergencja Kullbacka Leiblera, maksymalne prawdopodobieństwo jako minimalny kontrast.

5) Nierówność informacyjna, predyktory liniowe.

6) Estymatory całkowitej dostateczności i UMVU (jednolita minimalna zmienność bezstronna).

7) Asymptotyczne wyniki estymatorów, spójność, metoda Delta.

8) Przedziały ufności: metoda Pivot. Testowanie hipotez: test ilorazu wiarygodności, lemat Neymana Pearsona, współczynnik wiarygodności monotonicznej, twierdzenie Rubina Karlina, wartości p, przedziały ufności przez odwrócenie statystyki testowej.

9) Gaussowskie modele liniowe

10) Test asymptotycznego współczynnika wiarygodności, testy Chi-kwadrat, statystyka Walda, regresja logistyczna.

Analizuj dane, konstruuj modele statystyczne, szacuj parametry i wykorzystuj modele do predykcji za pomocą języka programowania R, jasno przedstawiaj wnioski.

Metody i kryteria oceniania:

1) Egzamin

2) Udział w zajęciach

3) Zadowalająca praca laboratoryjna.

Praca laboratoryjna na zasadzie zaliczenia / niezaliczenia; aby zaliczyć kurs student musi zaliczyć ćwiczenia komputerowe.

O ocenie końcowej decyduje kombinacja ocen z a) egzaminu pisemnego i b) udziału w zajęciach.

Zajęcia w cyklu "Semestr letni 2021/22" (zakończony)

Okres: 2022-02-21 - 2022-06-15
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć:
Ćwiczenia, 30 godzin więcej informacji
Laboratorium, 15 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: John Noble
Prowadzący grup: John Noble, Piotr Pokarowski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin

Zajęcia w cyklu "Semestr letni 2022/23" (jeszcze nie rozpoczęty)

Okres: 2023-02-20 - 2023-06-18

Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć:
Ćwiczenia, 30 godzin więcej informacji
Laboratorium, 15 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Łukasz Rajkowski
Prowadzący grup: Błażej Miasojedow, John Noble, Piotr Pokarowski, Łukasz Rajkowski
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Matematyki, Informatyki i Mechaniki.
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
kontakt deklaracja dostępności USOSweb 6.8.0.0-0cee12404 (2022-08-03)