Serwisy internetowe Uniwersytetu Warszawskiego Nie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Statystyka wielowymiarowa

Informacje ogólne

Kod przedmiotu: 1000-135SW Kod Erasmus / ISCED: 11.1 / (0541) Matematyka
Nazwa przedmiotu: Statystyka wielowymiarowa
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Przedmioty fakultatywne dla studiów 2 stopnia na matematyce
Przedmioty fakultatywne na matematyce
Strona przedmiotu: https://www.mimuw.edu.pl/~noble/courses/MultivariateStatistics/
Punkty ECTS i inne: 6.00
zobacz reguły punktacji
Język prowadzenia: angielski
Rodzaj przedmiotu:

fakultatywne

Skrócony opis:

This course presents multivariate statistical theory and techniques. The topics covered are:

1) Asymptotic log likelihood ratio tests; Wald, Rao, Pearson; logistic regression.

2) Generalised Linear Models.

3) Model selection criteria (for example: AIC, BIC)

4) Shrinkage methods for linear regression (e.g. PCR, PSLR, Ridge and LASSO).

5) The multivariate Gaussian distribution, parameter estimation, the Wishart distribution.

6) Statistical tests for multivariate Gaussian data. (e.g. Hotelling)

7) The data matrix, geometrical representations and distances.

8) Principal Component Analysis and Canonical Correlation Analysis.

9) Non-parametric Density Estimation: histograms, kernel density estimation methods, optimal bin width, projection pursuit methods for multivariate densities.

10) Discriminant Function Analysis.

11) Clustering techniques, including logistic regression, self organising maps (SOM) and the EM algorithm as a tool for clustering and semi-supervised learning.

Pełny opis:

This course presents multivariate statistical theory and techniques. The topics covered are:

1) Asymptotic log likelihood ratio tests; Wald, Rao, Pearson; logistic regression.

2) Generalised Linear Models.

3) Model selection criteria (for example: AIC, BIC)

4) Shrinkage methods for linear regression (e.g. PCR, PSLR, Ridge and LASSO).

5) The multivariate Gaussian distribution, parameter estimation, the Wishart distribution.

6) Statistical tests for multivariate Gaussian data. (e.g. Hotelling)

7) The data matrix, geometrical representations and distances.

8) Principal Component Analysis and Canonical Correlation Analysis.

9) Non-parametric Density Estimation: histograms, kernel density estimation methods, optimal bin width, projection pursuit methods for multivariate densities.

10) Discriminant Function Analysis.

11) Clustering techniques, including logistic regression, self organising maps (SOM) and the EM algorithm as a tool for clustering and semi-supervised learning.

Literatura:

1. Izenman, A.J. Modern Multivariate Statistical Techniques, Springer 2008

2. T. J. Hastie, R. J. Tibshirani i J. Friedman, The Elements of Statistical Learning, Springer 2001.

3 The R Development Core Team, An Introduction to R, www.r-project.org.

4. E. Paradis, R for Beginners, www.r-project.org.

5. J.M. Noble Course notes on the course page

https://www.mimuw.edu.pl/~noble/courses/MultivariateStatistics/

Efekty uczenia się:

1) Can build and evaluate linear and generalised linear statistical models, using modern techniques.

2) Understands the multivariate statistical theory that lies behind the techniques.

3) Can carry out canonical correlation analysis and principal component analysis.

4) Has a facility with classification techniques, discriminant function analysis, and other supervised learning techniques.

5) Has a facility with clustering techniques, including (for example) SOM (self organised maps)

6) Can implement all these techniques in R and has an understanding of the theoretical background.

Social competence

Understands the main methods of multivariate statistical data analysis and the theory behind these methods. Is able to perform a routine analysis in R.

Can analyse data and build simple models in collaboration with a naturalist, engineer or economist.

Metody i kryteria oceniania:

The assessment is in two parts:

1) Applications: assignments throughout the semester and a larger project at the end, requiring data analysis using R; assessment criteria will be a) correctness of the data analysis and b) clarity of the presentation of conclusions.

2) Examination consisting of theoretical questions.

Both these components are given equal weight.

Zajęcia w cyklu "Semestr zimowy 2020/21" (zakończony)

Okres: 2020-10-01 - 2021-01-31
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: John Noble
Prowadzący grup: John Noble
Strona przedmiotu: https://www.mimuw.edu.pl/~noble/courses/MultivariateStatistics/
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin

Zajęcia w cyklu "Semestr zimowy 2021/22" (w trakcie)

Okres: 2021-10-01 - 2022-02-20
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Laboratorium, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: John Noble
Prowadzący grup: John Noble
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.