University of Warsaw - Central Authentication System
Strona główna

Probability theory

General data

Course ID: 1000-1L00RP
Erasmus code / ISCED: 11.103 The subject classification code consists of three to five digits, where the first three represent the classification of the discipline according to the Discipline code list applicable to the Socrates/Erasmus program, the fourth (usually 0) - possible further specification of discipline information, the fifth - the degree of subject determined based on the year of study for which the subject is intended. / (0541) Mathematics The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Probability theory
Name in Polish: Rachunek prawdopodobieństwa
Organizational unit: Faculty of Mathematics, Informatics, and Mechanics
Course groups: Proseminars for Mathematics
ECTS credit allocation (and other scores): 2.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
Type of course:

proseminars

Short description:

Extensions of the standard courses in probability. Topics usually include the Laplace transform, generating functions, and applications of probability theory to real-life problems and to other branches of mathematics.

Full description:

Extensions of the standard courses in probability. Topics usually include the Laplace transform, generating functions, and applications of probability theory to real-life problems and to other branches of mathematics.

Bibliography:

References will be given at the first meeting.

Learning outcomes: (in Polish)

1) Poszerzenie wiedzy z teorii prawdopodobieństwa.

2) Umiejętność uważnego zapoznania się z tekstem matematycznym, samodzielnego uzupełniania szczegółów rozumowań, samodzielnego uporządkowania wiedzy.

3) Umiejętność przygotowania i wygłoszenia referatu na zadany temat. Świadomość cech, które powinno posiadać dobre wystąpienie.

4) Umiejętność śledzenia dłuższego referatu, zadawania pytań, wygłaszania komentarzy, uczestniczenia w dyskusji.

5) Umiejętność korzystania z literatury, również w języku angielskim. Umiejętność korzystania z baz MathSciNet i zbMATH.

6) Umiejętność napisania i zredagowania dłuższego tekstu matematycznego, polegająca m.in. na umiejętności samodzielnego uzupełniania szczegółów dowodów, uporządkowania materiału, poprawnego korzystania z LaTeXa.

Assessment methods and assessment criteria: (in Polish)

Zaliczenie na podstawie wygłoszonych referatów, obecności i złożenia pracy licencjackiej.

Classes in period "Academic year 2024/25" (past)

Time span: 2024-10-01 - 2025-06-08
Selected timetable range:
Go to timetable
Type of class:
Proseminar, 60 hours more information
Coordinators: Michał Kotowski, Michał Strzelecki
Group instructors: Michał Kotowski, Michał Strzelecki
Students list: (inaccessible to you)
Credit: Course - Pass/fail
Proseminar - Pass/fail

Classes in period "Academic year 2025/26" (future)

Time span: 2025-10-01 - 2026-06-07
Selected timetable range:
Go to timetable
Type of class:
Proseminar, 60 hours more information
Coordinators: Tomasz Gałązka, Michał Strzelecki
Group instructors: Tomasz Gałązka, Michał Strzelecki
Students list: (inaccessible to you)
Credit: Course - Pass/fail
Proseminar - Pass/fail
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
contact accessibility statement site map USOSweb 7.1.2.0-f5f652ca3 (2025-07-15)