University of Warsaw - Central Authentication System
Strona główna

(in Polish) Analiza danych biomedycznych

General data

Course ID: 1000-5D22ADB
Erasmus code / ISCED: 11.1 The subject classification code consists of three to five digits, where the first three represent the classification of the discipline according to the Discipline code list applicable to the Socrates/Erasmus program, the fourth (usually 0) - possible further specification of discipline information, the fifth - the degree of subject determined based on the year of study for which the subject is intended. / (0541) Mathematics The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: (unknown)
Name in Polish: Analiza danych biomedycznych
Organizational unit: Faculty of Mathematics, Informatics, and Mechanics
Course groups: Master seminars for Mathematics
MSc seminars for Bioinformatics
MSc seminars for Machine Learning
ECTS credit allocation (and other scores): 6.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: English
Type of course:

Master's seminars

Short description:

This seminar focuses on the application of computational biology and machine learning to biomedical data from modern technologies such as genome sequencing (including single-cell), medical imaging, and molecular profiling. We explore probabilistic models (including graphical ones), statistical data analysis, machine learning (including deep learning), and generative approaches, particularly in the context of cancer research.

Full description:

Today's medical challenges often involve diseases with complex genetic and molecular backgrounds. Modern molecular profiling methods yield vast resources of tabular or imaging data. Analysis of these data can help understand how diseases such as cancer or infectious diseases arise, how they work, and how to treat them.

Biomedical data analysis is a very capacious field of research that uses a variety of mathematics and computer science methods: artificial intelligence, machine learning, probabilistic methods, statistics. It is currently a very intensively developing field of interest for both private companies and all leading universities.

The topics of the seminar focus on molecular data analysis methods. Many papers deal with current research projects in which the research groups leading the seminar are involved. Our recent interests include the following topics:

- Modeling the tumor microenvironment. What is the spatial organization of the tumor and its neighborhood? How do they interact with each other? These interesting questions can be addressed using spatial transcriptomics, digital tumor imaging or mass spectrometry data. (Methods: probabilistic graphical models, machine learning models.)

- Reconstructing cancer family trees. Which cancer mutations appear first? How do metastases arise? How does drug resistance arise in cancer? Is cancer evolution neutral or driven by selection? These and many other questions about the family history of cancer cells are very exciting for us! (Methods: probabilistic graphical models, mathematical models.)

- Mutagenic processes in cancer. The mutation landscape of a cancer genome is a result of complex interactions between DNA damage, DNA repair, and other biological processes. Such processes can be studied through the lenses of characteristic mutation patterns imprinted by individual mutagens. We analyze these patterns, link them to specific causes, uncover and model interactions between them. (Methods: statistical data analysis, probabilistic methods, machine learning.)

- Deep Pathologist. Can deep learning algorithms improve the work of pathologists? Artificial intelligence methods, such as convolutional neural networks, can be trained on histological images of tumors to recognize multiple tissue types. (Methods: deep learning models.)

- Modeling drug efficacy. We attempt to understand and predict how drugs act on cancer cell lines. (Methods: statistical models, optimization algorithms.)

- Antimicrobial resistance. We are developing specialized deep generative models for the generation of synthetic antimicrobial peptides that can kill antibiotic-resistant bacteria. (Methods used: deep learning, generative models.)

Bibliography:

Contemporary literature in the field, including publications in scientific journals and preprints.

Learning outcomes: (in Polish)

Wiedza

1. Ma ogólna wiedzę o problemach bioinformatyki i biologii systemów (K_W08).

2. Ma podstawową wiedzę w zakresie podstawowych narzędzi matematycznych stosowanych w modelowaniu i analizie danych molekularnych (K_W09).

Umiejętności

1. Dostrzega ograniczenia własnej wiedzy i rozumie potrzebę jej ciągłego uzupełniania i aktualizowania (K_U07)

2. Potrafi przygotować prezentację i wygłosić referat opierając się na artykułach naukowych lub wynikach własnych badań (K_U08).

3. Potrafi czytać ze zrozumieniem teksty naukowe w języku angielskim (K_U09).

Kompetencje

1. Potrafi zarządzać swoim czasem oraz podejmować zobowiązania i dotrzymywać terminów (K_K08).

2. Jest gotów do przedstawiania wybranych osiągnięć bioinformatycznych i formułowania opinii na ich temat (K_K05, K_K06).

Assessment methods and assessment criteria: (in Polish)

I rok: obecność na zajęciach, wygłoszenie dwóch referatów, zatwierdzenie tematu pracy magisterskiej.

II rok: obecność na zajęciach, wygłoszenie dwóch referatów, złożenie pracy magisterskiej.

Classes in period "Academic year 2024/25" (past)

Time span: 2024-10-01 - 2025-06-08
Selected timetable range:
Go to timetable
Type of class:
Second cycle diploma seminar, 60 hours more information
Coordinators: Aleksander Jankowski, Damian Wójtowicz
Group instructors: Aleksander Jankowski, Damian Wójtowicz
Students list: (inaccessible to you)
Credit: Pass/fail
Notes: (in Polish)

W semestrze zimowym 2024/25 seminarium będzie miało formę wyjazdu w dniach 29 listopada – 1 grudnia 2024 r.

Classes in period "Academic year 2025/26" (future)

Time span: 2025-10-01 - 2026-06-07
Selected timetable range:
Go to timetable
Type of class:
Second cycle diploma seminar, 60 hours more information
Coordinators: Krzysztof Gogolewski, Damian Wójtowicz
Group instructors: Krzysztof Gogolewski, Damian Wójtowicz
Students list: (inaccessible to you)
Credit: Course - Pass/fail
Second cycle diploma seminar - Pass/fail
Notes: (in Polish)

W semestrze zimowym 2024/25 seminarium będzie miało formę wyjazdu w dniach 29 listopada – 1 grudnia 2024 r.

Course descriptions are protected by copyright.
Copyright by University of Warsaw.
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
contact accessibility statement site map USOSweb 7.1.2.0-bc9fa12b9 (2025-06-25)