Foundations of Quantitative Political Analysis (II)
Informacje ogólne
Kod przedmiotu: | 2102-ANG-L-D3FQPA |
Kod Erasmus / ISCED: |
14.1
|
Nazwa przedmiotu: | Foundations of Quantitative Political Analysis (II) |
Jednostka: | Wydział Nauk Politycznych i Studiów Międzynarodowych |
Grupy: |
Nauki Polityczne -ANG-DZIENNE I STOPNIA - 3 semestr 1 rok - przedmioty obowiązkowe |
Punkty ECTS i inne: |
5.00
|
Język prowadzenia: | angielski |
Wymagania (lista przedmiotów): | Foundations of Quantitative Political Analysis 2102-ANG-L-D2FOQP |
Założenia (lista przedmiotów): | Foundations of Quantitative Political Analysis 2102-ANG-L-D2FOQP |
Założenia (opisowo): | (tylko po angielsku) Participation in the class requires completion of Foundations of Quantitative Political Analysis [2102-ANG-L-D2FOQP]. |
Tryb prowadzenia: | w sali |
Skrócony opis: |
(tylko po angielsku) Continuation of Foundations of Quantitative Political Analysis (I) Development of students' basic analytical skills in quantitative methods. Development of their skills related to the use of computer software for this purpose. Getting them acquainted with the fundamental challenges of using quantitative methods in the social sciences. |
Pełny opis: |
(tylko po angielsku) Workshop | Seminar 1. Databases | Simple Linear Regression -- Repetition 2. Ideas for PROJECT-1 | Multiple Linear Regression -- Applications 3. Working on PROJECT-1 | Non-linear regressions -- Logistic regressions 4. Working on PROJECT-1 | Casual analysis 5. PROJECT-1 presentations | Big Data 6. NLP-AI (I) | NLP 7. NLP-AI (II) | AI 8. Ideas for PROJECT-2 | Test 9. Working on PROJECT-2 10. Working on PROJECT-2 11. PROJECT-2 presentations 12. PROJECT-2 presentations Workshop Project-1 McKinney W. (2022). Python for data analysis : data wrangling with pandas numpy and jupyter (Third). O'Reilly Media. and additional online materials. Project-2 Sowmya V. B., Majumder, B., Gupta, A., & Surana, H. (2020). Practical natural language processing : a comprehensive guide to building real-world NLP systems (First edition). O’Reilly Media. PLUS online resources. Seminar: Simple Linear Regression Martin P. (2022). Linear regression : an introduction to statistical models (1st ed.). SAGE Publications. Chapters: 1, 2, and 3. Mutliple Linear Regression Martin P. (2022). Linear regression : an introduction to statistical models (1st ed.). SAGE Publications. Chapters: 4 and 3. Logistic Regression Martin P. & Martin P. (2022). Regression models for categorical and count data ed. 1. SAGE Publications. Chapters: 1 and 2. Casual Analysis McBee M. (2022). Statistical approaches to causal analysis. SAGE Publications. Chapters: 1, 2, and 3. Big Data Castellani B. C. & Rajaram R. (2022). Big data mining and complexity. SAGE Publications. Chapters: 2, 3, 4, and 5. NLP and AI Grimmer, J., Roberts, M. E., & Stewart, B. M. (2022). Text as data : a new framework for machine learning and the social sciences. Princeton University Press. Chapters: 2 and 17. AI usage -- Level 5: Full AI AI should be used as a ‘co-pilot’ in order to meet the requirements of the assessment, allowing for a collaborative approach with AI and enhancing creativity. You may use Al throughout your assessment to support your own work and do not have to specify which content is Al generated. |
Literatura: |
(tylko po angielsku) See above. |
Efekty uczenia się: |
(tylko po angielsku) Students can perform simple quantitative analysis, starting from obtaining a dataset through its cleaning and ending with simple statistical tests and the use of simple regression models. (K_U05-K_U08, K_K01-K_K03) Students are familiar with the basic dilemmas related to the use of quantitative methods in political science research. (K_W01, K_K01-K_K03) |
Metody i kryteria oceniania: |
(tylko po angielsku) The course concludes with a written exam, in which students must perform various analytical tasks using the relevant software. In order to take the exam, students must pass the tests at the end of the seminar and complete all the tasks, including the project, carried out during the workshop. Students may have one unexcused absence from the seminar and two from the workshop. The teacher must account for all additional absences. The maximum number of absences permitted for the entire course is four. |
Zajęcia w cyklu "Semestr zimowy 2024/25" (zakończony)
Okres: | 2024-10-01 - 2025-01-26 |
Przejdź do planu
PN WT WAR
KON
ŚR CZ PT |
Typ zajęć: |
Konwersatorium, 15 godzin
Warsztaty, 30 godzin
|
|
Koordynatorzy: | Bartosz Pieliński | |
Prowadzący grup: | Bartosz Pieliński | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Konwersatorium - Egzamin Warsztaty - Zaliczenie |
Zajęcia w cyklu "Semestr zimowy 2025/26" (jeszcze nie rozpoczęty)
Okres: | 2025-10-01 - 2026-01-25 |
Przejdź do planu
PN WAR
KON
WT ŚR CZ PT |
Typ zajęć: |
Konwersatorium, 15 godzin
Warsztaty, 30 godzin
|
|
Koordynatorzy: | Bartosz Pieliński | |
Prowadzący grup: | Bartosz Pieliński | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Konwersatorium - Egzamin Warsztaty - Zaliczenie |
Właścicielem praw autorskich jest Uniwersytet Warszawski.