Uniwersytet Warszawski - Centralny System Uwierzytelniania
Strona główna

Environmental Monitoring and Assessment

Informacje ogólne

Kod przedmiotu: 4030-EMA
Kod Erasmus / ISCED: 07.0 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0532) Nauki o ziemi Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Environmental Monitoring and Assessment
Jednostka: Wydział Geologii
Grupy: Sustainable Development, elective workshops, 2nd cycle programme, 1st year, 2nd semester
Punkty ECTS i inne: 3.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.
Język prowadzenia: angielski
Rodzaj przedmiotu:

nieobowiązkowe

Wymagania (lista przedmiotów):

Global Changes – Synthetic Outlook and the Concept of Sustainable Development 4030-GCOSD

Tryb prowadzenia:

w sali

Skrócony opis:

This one-semester program offers students the opportunity to learn basic skills to succeed in the exciting and expanding field of environmental management and assessment. The program also consists of practical and field experiences allowing students to acquire a range of interdisciplinary techniques used by those at the forefront of environmental management practice.

Pełny opis:

Modern engineering allows to improve our environment, mitigate hazards, and improve our quality of life. But although 50 years of geoengineering experience we still struggle with bad planning and mistaken decisions, resulting in accidents and disasters involving loss of life and resources. Moreover different, human independent, hazards can occur. Geohazards, such as earthquakes, volcanic eruptions, landslides and tsunamis, can have devastating effects on populations, economies and landscapes around the world. In the current century world’s urban population rapidly grows, new cities are build and enlarged, and the old ones need to be rejuvenated. It demands to enlarge capacities of city transportation, underground structures such as subways, water tunnels, underground railways, and deep excavations. It causes a higher vulnerability to natural hazards. To mitigate or even to avoid these hazards we need to involve advanced systems for assessment and monitoring of inanimate nature and animate nature as well. Recently, we must have a more rational approach based on scientific knowledge augmented by research and environmental monitoring. We still have to build mines to extract minerals and coal, construct foundations, excavate rock slopes, dams, shafts, oil reservoir wells, build underground storage facilities for oil, gas, water and nuclear waste. All these human activities have an influence on the environment, but modern rock engineering allows us to mitigate this impact. Geoengineers have a crucial role in studying and analyzing the causes, mechanisms and impacts of natural and human-induced geohazards. Geoengineering knowledge helps to assess and predict the risks due to geohazards.

Literatura:

• Environmental Monitoring and Assessment - An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Man and the Environment.

• E. Hoek. 2007. Practical Rock Engineering.

• G. McCall, D. Laming, S. Scott Geohazards: Natural and man-made. Springer, 1995.

• Jian Chu, Sri P.R. Wardani, Atsushi. Geotechnical Predictions and Practice in Dealing with Geohazards. Springer, 2013.

• Fusao Oka, Akira Murakami, Sayuri Kimoto. Prediction and Simulation Methods for Geohazard Mitigation. CRC Press, 2009.

Efekty uczenia się:

After completion of the course the student:

- has an elementary knowledge of geology, environmental protection, statistics, operations research, management and infrastructure related to the geoengineering;

- has an elementary knowledge of modern development trends in the area of urbanization, both in the constructions and service activities;

- has an elementary knowledge of the terminology, concepts, and methods of environmental management and assessment;

- has the knowledge to determine the spatial range and complexity of the engineering geological environment;

- has the knowledge to classify engineering-geological conditions and assess geohazards;

- has language skills in the fields of engineering and technology relevant to the environmental monitoring and assessment, according to the requirements for level B2 of the European Framework of Reference for Languages;

- formulates and solves engineering tasks, using a variety of methods, including analytical, simulation and experimental methods;

- understands the need to improve professional and personal competences, the need for continuous training, including English language skills;

- is aware of the impact of non-technical aspects and the effects of engineering activities, including their impact on the environment;

- improve the understanding that the interdependence of site exploration, design, construction and operation - each with its own objectives - all striving to fulfill the overall objectives of the project;

- understands of the issues involved, the state-of-the-art methods to be used, as well as close co-operation between the owners, design engineers and contractors, and even other parties, such as the general public;

- understands that an adequate assessment of the environment is a prerequisite to formulating effective recommendations regarding the suitability of a site for sustainable human settlement and infrastructure development;

- realizes, that any structure or infrastructure interfacing with the geological environment can be constructed economically, perform safely, and can have a non-detrimental impact on other works and human lives only if all environmental elements are accurately identified and their properties adequately measured and evaluated.

K_W02; K_W05; K_W07; K_W09

K_U01; K_U02; K_U03; K_U07; K_U08

K_K01; K_K03; K_K05; K_K06; K_K09

Metody i kryteria oceniania:

Final written assessment of knowledge gained during the workshop,

three absences allowed (justified).

Praktyki zawodowe:

-

Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)

Okres: 2024-02-19 - 2024-06-16
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Warsztaty, 45 godzin więcej informacji
Koordynatorzy: Anna Bąkowska
Prowadzący grup: Anna Bąkowska
Lista studentów: (nie masz dostępu)
Zaliczenie: Zaliczenie na ocenę
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.0.0-360daf7b8 (2024-08-28)