Przedmioty w rejestracji Rejestracja na przedmioty całoroczne i z semestru zimowego 2020/21 1000-2020
Opcje | ||||
---|---|---|---|---|
1000-113bTP1* |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla II roku JSIM - wariant 3I+4M (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Wykład omawia podstawowe pojęcia topologii: przestrzenie metryczne i topologiczne, przekształcenia ciągłe, homeomorfizmy, iloczyny kartezjańskie, zupełne przestrzenie metryczne, zwartość, spójność i łukową spójność, homotopię przekształceń i pętli, ściągalność, przestrzenie ilorazowe. Wykład jest przeznaczony dla studentów zainteresowanych głębszym poznaniem przedmiotu i lubiących myśleć o związanych z nim zadaniach i problemach. |
|
||
1000-113bTP1a |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla II roku JSIM - wariant 3I+4M (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Wykład omawia podstawowe pojęcia topologii: przestrzenie metryczne i topologiczne, przekształcenia ciągłe, homeomorfizmy, iloczyny kartezjańskie, zupełne przestrzenie metryczne, zwartość, spójność i łukową spójność, homotopię przekształceń i pętli, ściągalność, konstrukcję przestrzeni ilorazowej. |
|
||
1000-115ST |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Wykład przedstawia podstawowe pojecia i metody statystyki. Omowione są: charakterystyki populacji i ich próbkowe odpowiedniki, budowa modeli statystycznych w ujęciu częstościowym i Bayesowskim, zagadnienia estymacji parametrycznej i nieparametrycznej, testowanie hipotez statystycznych, regresja, klasyfikacja/dyskryminacja. Przedmiot tylko dla studentów MSEM |
|
||
1000-134FAN |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla III roku JSIM - wariant 3M+4I (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Podstawowe pojęcia analizy zespolonej, ilustracja jej związków z topologią, algebrą i geometrią, w tym: pochodna w dziedzinie zespolonej i konsekwencje różniczkowalności w sensie zespolonym. Równania Cauchy’ego-Riemanna. Wzór całkowy Cauchy’ego, analityczność funkcji holomorficznych. Zasadnicze Twierdzenie Algebry. Klasyfikacja izolowanych punktów osobliwych. Twierdzenie o residuach i jego zastosowania. Twierdzenie Riemanna. |
|
||
1000-135AF |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Podstawowe pojęcia analizy funkcjonalnej, ilustracja jej związków z geometrią i algebrą liniową, analizą matematyczną i topologią, w tym: pojęcie przestrzeni Banacha oraz przestrzeni Hilberta, pojęcie operatora oraz funkcjonału liniowego, ciągłego, twierdzenie Hahna-Banacha, twierdzenie Banacha-Steinhausa, twierdzenie o odwzorowaniu otwartym. |
|
||
1000-135AF* |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Zapoznanie z podstawowymi pojęciami, twierdzeniami i metodami liniowej analizy funkcjonalnej. |
|
||
1000-135ALP |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Przedmiot stanowi wprowadzenie do algebry przemiennej i jest wymagany do rejestracji na przedmiot geometria algebraiczna. Na wykładzie zostaną wprowadzone pojęcia związane z pierścieniami przemiennymi i modułami nad tymi pierścieniami, i zostaną dowiedzione podstawowe twierdzenia dotyczące tych klas obiektów algebraicznych; ważną klasą rozważanych pierścieni będą pierścienie noetherowskie. |
|
||
1000-135AN |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Metody numerycznego rozwiązywania ważnych zadań obliczeniowych matematyki stosowanej: zagadnienia własnego, wielkich układów równań liniowych, układów równań nieliniowych oraz całkowania wielowymiarowego. |
|
||
1000-135ASW |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Wykład ma na celu przedstawienie klasycznych rezultatów dotyczacych struktury i teorii reprezentacji liniowych algebr skonczonego wymiaru nad ciałem. Omówione beda: odpowiedniosc pomiedzy teoria modułów i teoria reprezentacji, moduły proste, radykał algebry i klasykacja półprostych algebr łacznych. Podane beda zastosowania do teorii reprezentacji grup skonczonych, poprzez rezultaty dotyczace algebr grupowych i teorie charakterów grup. Omówione zostana przykłady zastosowan. Podane beda podstawowe informacje o skonczenie wymiarowych algebrach Lie’go i ich reprezentacjach. Jako narzedzie w tej teorii, omówione zostana algebry obwiednie i ich własnosci. |
|
||
1000-135GK |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Wykład ma na celu zapoznanie uczestników z podstawowymi algorytmami i strukturami danych stosowanymi w grafice komputerowej. Przedstawiane wiadomości dotyczą algorytmów grafiki rastrowej, geometrii dwu- i trójwymiarowej, elementów geometrii obliczeniowej, modelowania geometrycznego, algorytmów widoczności i modeli oświetlenia. |
|
||
1000-135GM1 |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Podstawowe pojęcia i twierdzenia geometrii elementarnej wraz z licznymi zastosowaniami. Własności miarowe kątów oraz odcinków w powiązaniu z okręgami. Izometrie oraz nierówność trójkąta: problemy minimalizacyjne, m.in. Torricelliego-Fermata oraz Fagnano. Podobieństwo oraz pole: twierdzenia Menelausa, Cevy, Ptolemeusza, Newtona, Gaussa, okrąg Apoloniusza. Grupy przekształceń: izometrie, podobieństwa, dylatacje. |
|
||
1000-135IFI |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Wykład przedstawia podstawowe instrumenty finansowe: kontrakty na przyszłą stopę procentową, kontrakty wymiany procentowej, kontrakty forward i futures, kontrakty opcyjne - opcje waniliowe, wybrane opcje egzotyczne oraz opcje na stopę procentową. Dla każdego z tych instrumentów przedstwione są: struktura instrumentu i jego zastosowania, metoda wyceny oraz analiza wrażliwości - z uwzględnieniem praktyki rynkowej. |
|
||
1000-135IP2 |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Wykład będzie opisywał modelowanie rynków obligacji, modele stopy krótkoterminowej, instrumenty pochodne stopy procentowej (FRA, caps, floors, swaptions itp.), modele stopy forward a także zagadnienia kalibracji modeli do danych rynkowych. |
|
||
1000-135LOM |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Wprowadzenie do klasycznych zagadnień logiki matematycznej z elementami teorii modeli. Jeśli w wykładzie nie będą uczestniczyć słuchacze obcojęzyczni, wykład będzie prowadzony po polsku. |
|
||
1000-135MAG |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka (Wydział Matematyki, Informatyki i Mechaniki)
- Przedmioty fakultatywne dla studiów 1 stopnia na matematyce (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Celem zajęć jest przedstawienie podstawowych zagadnień teorii liczb, algebry oraz analizy w zakresie wymagań obowiązującej podstawy programowej z matematyki. Zostaną też przedstawione rozwiązania metodyczne oraz dobre praktyki związane z nauczaniem tych zagadnień, zarówno na poziomie szkoły podstawowej jak i ponadpodstawowej. Zajęcia będą wzbogacone o treści rozwijające zainteresowanie uczniów matematyką w zakresie omawianych tematów. |
|
||
1000-135MGE |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka (Wydział Matematyki, Informatyki i Mechaniki)
- Przedmioty fakultatywne dla studiów 1 stopnia na matematyce (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Celem wykładu jest przedstawienie szerokiego zestawu metod nauczania geometrii w szkole podstawowej i średniej. |
|
||
1000-135MGT |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Podstawowe pojecia teorii kategorii, kategorie addytywne i abelowe; Iloczyn tensorowy w kategorii modułów. Moduły projektywne, injektywne i rezolwenty. Grupy z gradacja; kompleksy łancuchowe i ich homologie. Funktory pochodne Hom i produktu tensorowego. Presnopy, snopy i ich kohomologie. Kohomologie symplicjalne i kohomologie Cecha. Nakrycia i wiazki główne; interpretacja kohomologiczna. W przypadku udziału słuchaczy obcojezycznych wykład jest prowadzony po angielsku. |
|
||
1000-135MIE |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Mikroekonomia - dziedzina ekonomii zajmującą się mechanizmami wyboru jednostek i interakcjami pomiędzy jednostkami w gospodarce. Na wykładzie będziemy łączyć wprowadzenie do mikroekonomii z zaawansowaną mikroekonomią matematyczną. Zakres przedmiotu to teoria wyboru, zagadnienia wyboru producentów i konsumentów, wybór w warunkach niepewności oraz różne pojęcia równowagi na rynkach. |
|
||
1000-135MMN |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Celem wykładu jest przedstawienie podstawowych metod układów dynamicznych i teorii równań różniczkowych cząstkowych niezbędnych do współczesnego opisu zjawisk przyrodniczych i społecznych. |
|
||
1000-135MMS |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Celem wykładu jest przybliżenie tematyki prac badawczych prowadzonych na Wydziale w zakresie matematyki stosowanej, w celu ułatwienia studentom zaplanowania swoich studiów II stopnia oraz tematyki przyszłej pracy magisterskiej. Zaprezentowanych będzie kilka klasycznych modeli matematyki stosowanej w fizyce, biologii, ekonomii i naukach społecznych. |
|
||
1000-135MR |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Celem wykładu jest przedstawienie podstawowych teoretycznych i praktycznych zagadnien dotyczacych miar ryzyka finansowego, w tym roli w zarzadzaniu ryzykiem w instytucjach finansowych. Ponadto bedzie omówiony zwiazek miar ryzyka z teoria ubezpieczen. |
|
||
1000-135MUZ |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Model probabilistyczny ubezpieczeń życiowych. |
|
||
1000-135NRR |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Wykład obejmuje konstrukcję, analizę i implementację podstawowych metod numerycznego rozwiązywania zagadnień początkowych i brzegowych dla równań różniczkowych zwyczajnych oraz zagadnień brzegowych i początkowo-brzegowych dla trzech podstawowych typów równań różniczkowych cząstkowych: eliptycznych parabolicznych i hiperbolicznych. |
|
||
1000-135OPN |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Metody znajdowania ekstremów (minimów i maksimów) funkcji wielu zmiennych na zbiorach zadanych przez układ równości i nierówności nieliniowych. Metoda mnożników Lagrange'a, warunki Kuhna-Tuckera, techniki dualne. Szczególną uwagę poświęcimy optymalizacji wypukłej. |
|
||
1000-135POC |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Paradygmat programowania obiektowego. Praktyczna nauka programowania obiektowego w C++. |
|
||
1000-135ROZ |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Omawiane są następujące tematy: lokalna geometria zespolona, zespolone formy różniczkowe, rozmaitości kaehlerowskie, kohomologie Dolbeault, teoria Hodge’a, wiązki wektorowe, klasy Cherna. |
|
||
1000-135RP2 |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Rachunek Prawdopodobieństwa II zawiera wprowadzenie do teorii zbieżnosci według rozkładu (wykazanie równoważności wielu definicji, Centralne Twierdzenie Graniczne) i zastosowań w tej teorii elementów analizy harmonicznej (własności funkcji charakterystycznych). Ponadto omówione zostaną elementy teorii martyngałów (czyli, mowiąc w uproszczeniu, gier sprawiedliwych) i łańcuchów Markowa (pewnej klasy systemów losowych ewoluujących w czasie). |
|
||
1000-135RP2* |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Rachunek Prawdopodobieństwa II zawiera wprowadzenie do teorii zbieżnosci według rozkładu (wykazanie równoważności wielu definicji, Centralne Twierdzenie Graniczne) i zastosowań w tej teorii elementów analizy harmonicznej (własności funkcji charakterystycznych). Ponadto omówione zostaną elementy teorii martyngałów (czyli, mowiąc w uproszczeniu, gier sprawiedliwych) i łańcuchów Markowa (pewnej klasy systemów losowych ewoluujących w czasie). |
|
||
1000-135RRC |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Wykład stanowi wprowadzenie do teorii liniowych równań różniczkowych cząstkowych. Pierwsza część wykładu koncentruje się na klasycznej teorii równań pierwszego i drugiego rzędu. Druga część stanowi wprowadzenie do nowoczesnych metod: teorii przestrzeni Sobolewa i teorii słabych rozwiązań równań eliptycznych. Wykład nie wymaga wcześniejszego przygotowania z teorii równań różniczkowych cząstkowych. Wskazane jest natomiast przejście podstawowego kursu Analizy funkcjonalnej, przynajmniej równolegle. Pewne zagadnienia omawiane na wykładzie Wstęp do równań różniczkowych cząstkowych zostaną omówione szerzej, dotyczy to przede wszystkim teorii słabych rozwiązań, pojawią się także elementy teorii równań nieliniowych. |
|
||
1000-135RRJ |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Zachowania graniczne trajektorii równań różniczkowych zwyczajnych. Zbiory niezmiennicze. Równanie różniczkowe jako układ dynamiczny. |
|
||