Uniwersytet Warszawski, Wydział Matematyki, Informatyki i Mechaniki - Centralny System Uwierzytelniania
Strona główna

Przedmioty w rejestracji Rejestracja na przedmioty całoroczne i z semestru zimowego 2020/21 1000-2020

Lista uwzględnia również te przedmioty, które są chwilowo wyłączone z rejestracji (ale były lub będą uwzględnione w innych jej turach).
Filtry
Zaloguj się, aby uzyskać dostęp do dodatkowych opcji

Konkretniej - pokazuj tylko te przedmioty, dla których istnieje otwarta rejestracja taka, że możesz w jej ramach zarejestrować się na przedmiot.

Dodatkowo pokazywane są również te przedmioty, na które jesteś już zarejestrowany (lub składałeś prośbę o zarejestrowanie).

Pokaż tylko przedmioty z wybranej grupy: Boldem są napisane grupy przedmiotów zawierające przedmioty, dla których istnieje otwarta rejestracja taka, że możesz w jej ramach zarejestrować się na przedmiot.
Jeśli chcesz zmienić te ustawienia na stałe, edytuj swoje preferencje w menu Mój USOSweb.
Opcje
1000-111ADM1
Zajęcia przedmiotu
Grupy przedmiotu

Skrócony opis

Pierwsza część wykładu i ćwiczeń wprowadza studenta w teorię i praktykę

formalizmu matematycznego: elementy teorii mnogości są fundamentem na

którym zbudowany jest dalszy wykład algebry liniowej. Podstawy teorii

przestrzeni liniowych rozwinięte są nad dowolnym ciałem skalarów. Zarówno

teoria przestrzeni jak i przekształceń liniowych stosowane są nie tylko do

badania układów równań liniowych w kartezjańskich przestrzeniach

współrzędnych ale również do innych naturalnych przestrzeni i odwzorowań

między nimi, które pojawiają się naturalnie w innych działach matematyki

(przestrzenie wielomianów, ciągów i funkcji).

Strona przedmiotu
1000-113bAG1*
Zajęcia przedmiotu
Grupy przedmiotu

Skrócony opis

To jest rozszerzona wersja wykładu Algebra 1; wzbogacona o dodatkowy materiał dotyczący teorii grup i teorii pierścieni.

Podstawowe struktury algebraiczne: grupy, pierścienie przemienne z 1 i ciała. Teoria grup: podgrupy normalne, grupy ilorazowe, działania grup na zbiorach, informacje o klasyfikacji skończenie generowanych grup abelowych i twierdzeniu Sylowa. Teoria pierścieni: podzielność, rozkład na czynniki, pojęcie ideału oraz pierścienia ilorazowego. Teoria ciał: rozszerzanie ciała przez dołączenie pierwiastków wielomianu, informacja o istnieniu algebraicznego domknięcia ciała.

Strona przedmiotu
1000-113bAG1a
Zajęcia przedmiotu
Grupy przedmiotu

Skrócony opis

Podstawowe struktury algebraiczne: grupy, pierścienie przemienne z 1 i ciała. Teoria grup: podgrupy normalne, grupy ilorazowe, działania grup na zbiorach, informacje o klasyfikacji skończenie generowanych grup abelowych i twierdzeniu Sylowa. Teoria pierścieni: podzielność, rozkład na czynniki, pojęcie ideału oraz

pierścienia ilorazowego. Teoria ciał: rozszerzanie ciała przez dołączenie pierwiastków wielomianu, informacja o istnieniu algebraicznego domknięcia ciała.

Strona przedmiotu
1000-135ALP
Zajęcia przedmiotu
Grupy przedmiotu

Skrócony opis

Przedmiot stanowi wprowadzenie do algebry przemiennej i jest wymagany do

rejestracji na przedmiot geometria algebraiczna. Na wykładzie zostaną

wprowadzone pojęcia związane z pierścieniami przemiennymi i modułami nad

tymi pierścieniami, i zostaną dowiedzione podstawowe twierdzenia dotyczące

tych klas obiektów algebraicznych; ważną klasą rozważanych pierścieni będą

pierścienie noetherowskie.

Strona przedmiotu
1000-135ASW
Zajęcia przedmiotu
Grupy przedmiotu

Skrócony opis

Wykład ma na celu przedstawienie klasycznych rezultatów dotyczacych struktury i teorii reprezentacji

liniowych algebr skonczonego wymiaru nad ciałem. Omówione beda: odpowiedniosc pomiedzy teoria

modułów i teoria reprezentacji, moduły proste, radykał algebry i klasykacja półprostych algebr łacznych.

Podane beda zastosowania do teorii reprezentacji grup skonczonych, poprzez rezultaty dotyczace algebr

grupowych i teorie charakterów grup. Omówione zostana przykłady zastosowan. Podane beda podstawowe

informacje o skonczenie wymiarowych algebrach Lie’go i ich reprezentacjach. Jako narzedzie w tej teorii,

omówione zostana algebry obwiednie i ich własnosci.

Strona przedmiotu
1000-2M12DNA
Zajęcia przedmiotu
Grupy przedmiotu

Skrócony opis

Wykład poświęcony jest technikom sekwencjonowania DNA oraz problemom związanym z analizą ich danych wyjściowych. Problemy te mają charakter zarówno algorytmiczny (zastosowanie znajdują tu m.in. grafy de Bruijna, transformacja Barrows'a Wheeler'a), jak i statystyczny (analiza różnic w populacji, testowanie hipotez).

Strona przedmiotu
1000-2M12APW
Zajęcia przedmiotu
Grupy przedmiotu

Skrócony opis

Wykład poświęcony będzie ponadwielomianowym algorytmom dla problemów NP-trudnych, ze szczególnym uwzględnieniem algorytmów parametryzowanych.

Wykład jest pomyślany dla studentów i doktorantów zainteresowanych algorytmiką i kombinatoryką, i rozważających pracę naukową (choćby na poziomie pracy magisterskiej).

Strona przedmiotu
1000-2N09ALT
Zajęcia przedmiotu
Grupy przedmiotu

Skrócony opis

Wykład jest poświęcony omówieniu podstawowych metod projektowania i analizowania algorytmów związanych z tekstami. Zasadniczym problemem będzie zrozumienie struktury wielu skomplikowanych algorytmów oraz różnego typu techniki algorytmiczne i struktury danych (drzewa sufiksowe, grafy podsłów). Teksty są prostym a jednocześnie powszechnym typem informacji, ale będą rozważane zarówno standardowe teksty (jako ciągi symboli), jak również bardziej strukturalne formy: teksty dwuwymiarowe (związki z grafiką) i drzewa etykietowane (struktury występujące w XML i biologii obliczeniowej). Klasyczne problemy algorytmiczne związane są z szukaniem (lub wykrywaniem) wzorca, regularnością i kompresją tekstów. Ponadto rozważymy problemy związane z biologią obliczeniową (uliniowienie, drzewa ewolucyjne) oraz ze "stringologią" fraktali dwuwymiarowych. Wiele ciekawych tekstów jest zadanych w formie skompresowanej, rozmiar rzeczywistego tekstu może być wykładniczy w stosunku do rozmiaru n jego opisu.

Strona przedmiotu
1000-2M12AGO
Zajęcia przedmiotu
Grupy przedmiotu

Skrócony opis

Celem wykładu jest zapoznanie studenta wybranymi z modelami, algorytmami i narzędziami stosowanymi w genomice porównawczej ze szczególnym uwzględnieniem drzew i ich zastosowaniem w różnych kontekstach.

Planowane ćwiczenia będą częściowo formie laboratorium komputerowego.

Strona przedmiotu
1000-135AF
Zajęcia przedmiotu
Grupy przedmiotu

Skrócony opis

Podstawowe pojęcia analizy funkcjonalnej, ilustracja jej związków z geometrią i algebrą liniową, analizą matematyczną i topologią, w tym: pojęcie przestrzeni Banacha oraz przestrzeni Hilberta, pojęcie operatora oraz funkcjonału liniowego, ciągłego, twierdzenie Hahna-Banacha, twierdzenie Banacha-Steinhausa, twierdzenie o odwzorowaniu otwartym.

Strona przedmiotu
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
kontakt deklaracja dostępności USOSweb 6.8.0.0-0cee12404 (2022-08-03)