Przedmioty w rejestracji Rejestracja na przedmioty całoroczne i z semestru zimowego 2020/21 1000-2020
Opcje | ||||
---|---|---|---|---|
1000-113bTP1a |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla II roku JSIM - wariant 3I+4M (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Wykład omawia podstawowe pojęcia topologii: przestrzenie metryczne i topologiczne, przekształcenia ciągłe, homeomorfizmy, iloczyny kartezjańskie, zupełne przestrzenie metryczne, zwartość, spójność i łukową spójność, homotopię przekształceń i pętli, ściągalność, konstrukcję przestrzeni ilorazowej. |
|
||
1000-113bTP1* |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla II roku JSIM - wariant 3I+4M (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Wykład omawia podstawowe pojęcia topologii: przestrzenie metryczne i topologiczne, przekształcenia ciągłe, homeomorfizmy, iloczyny kartezjańskie, zupełne przestrzenie metryczne, zwartość, spójność i łukową spójność, homotopię przekształceń i pętli, ściągalność, przestrzenie ilorazowe. Wykład jest przeznaczony dla studentów zainteresowanych głębszym poznaniem przedmiotu i lubiących myśleć o związanych z nim zadaniach i problemach. |
|
||
1000-113bAM3a |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla II roku JSIM - wariant 3I+4M (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Przedmiot składa się z dwóch części. Pierwsza obejmuje rachunek różniczkowy funkcji wielu zmiennych, w tym twierdzenia o funkcji uwikłanej i odwrotnej, pojęcie rozmaitości zanurzonej w R^n i przestrzeni stycznej do rozmaitości, twierdzenie o mnożnikach Lagrange'a. Druga to wprowadzenie do teorii miary i całki Lebesgue'a, w tym konstrukcja miary Lebesgue'a, własności zbiorów i funkcji mierzalnych. Definicja całki Lebesgue'a, twierdzenia o zbieżności monotonicznej i zmajoryzowanej, lemat Fatou. Twierdzenie o zamianie zmiennych i twierdzenie Fubiniego. |
|
||
1000-113bAM3* |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla II roku JSIM - wariant 3I+4M (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Rachunek różniczkowy wielu zmiennych, teoria miary i całki. Uwaga: wykład może być trudniejszy i obszerniejszy od zwykłego. |
|
||
1000-113bAG1a |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla II roku JSIM - wariant 3M+4I (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Podstawowe struktury algebraiczne: grupy, pierścienie przemienne z 1 i ciała. Teoria grup: podgrupy normalne, grupy ilorazowe, działania grup na zbiorach, informacje o klasyfikacji skończenie generowanych grup abelowych i twierdzeniu Sylowa. Teoria pierścieni: podzielność, rozkład na czynniki, pojęcie ideału oraz pierścienia ilorazowego. Teoria ciał: rozszerzanie ciała przez dołączenie pierwiastków wielomianu, informacja o istnieniu algebraicznego domknięcia ciała. |
|
||
1000-113bAG1* |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla II roku JSIM - wariant 3M+4I (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
To jest rozszerzona wersja wykładu Algebra 1; wzbogacona o dodatkowy materiał dotyczący teorii grup i teorii pierścieni. Podstawowe struktury algebraiczne: grupy, pierścienie przemienne z 1 i ciała. Teoria grup: podgrupy normalne, grupy ilorazowe, działania grup na zbiorach, informacje o klasyfikacji skończenie generowanych grup abelowych i twierdzeniu Sylowa. Teoria pierścieni: podzielność, rozkład na czynniki, pojęcie ideału oraz pierścienia ilorazowego. Teoria ciał: rozszerzanie ciała przez dołączenie pierwiastków wielomianu, informacja o istnieniu algebraicznego domknięcia ciała. |
|
||
1000-111bWMAa |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Podstawowe pojęcia i metody teorii mnogości (wraz z niezbędnymi elementami logiki), stanowiące język matematyki współczesnej. |
|
||
1000-111bWI1b |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Celem przedmiotu jest zapoznanie studentów z podstawami rozwiązywania zadań przy użyciu algorytmów i praktyczna nauka podstaw programowania. |
|
||
1000-111bWI1a |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Celem wykładu jest zapoznanie studentów z zasadami rozwiązywania problemów przy użyciu komputerów oraz praktyczna nauka programowania. |
|
||
1000-111bGA1a |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Ciała, ciało liczb zespolonych, rozwiązywanie układów równań liniowych nad ciałem. Macierze, doprowadzanie do postaci schodkowej. Przestrzenie liniowe, podprzestrzenie, liniowa niezależność, rozpinanie przestrzeni, bazy, współrzędne wektora w bazie, wymiar przestrzeni liniowej. Rząd macierzy, twierdzenie Kroneckera-Capellego. Przekształcenia liniowe, zadawanie przekształcenia przez wartości na bazie. Jądro i obraz przekształcenia, monomorfizmy, epimorfizmy, izomorfizmy. Przekształcenia ilorazowe. Macierz przekształcenia liniowego, algebra macierzy, macierze odwracalne. Funkcjonały liniowe, przestrzenie i przekształcenia sprzężone, bazy dualne. Wyznaczniki, obliczanie za pomocą operacji elementarnych i rozwinięcia Laplace'a, twierdzenie Cauchy'ego o wyznaczniku iloczynu macierzy, wzory Cramera na rozwiązanie układu n równań. |
|
||