Przedmioty w rejestracji Rejestracja na przedmioty z semestru letniego 2020/21 1000-2020L
Opcje | ||||
---|---|---|---|---|
1000-114bMOB* |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Wykład zawiera: elementy rachunku błędu zaaokrągleń, interpolacje wielomianową i splajnową, elementy aproksymacji, kwadratury złożone i kwadratury Gaussa, numeryczne metody rozwiązywania układów równań liniowych, rozwiązywanie równań nieliniowych, numeryczne zadanie własne. Ponadto wykład porusza kwestie złożoności obliczeniowej omawianych zadań i optymalności algorytmów. Jest to wersja rozszerzona przedmiotu 1000-114bMOBa. |
|
||
1000-114bAM4a |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla II roku JSIM - wariant 3I+4M (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Przedmiot jest kontynuacją Analizy matematycznej II.1, obejmuje dalszy ciąg teorii całki Lebesgue'a, funkcje całkowalne w sensie Lebesgue'a oraz rachunek różniczkowy i całkowy na podrozmaitościach R^n. |
|
||
1000-114bAM4* |
Zajęcia przedmiotu
Grupy przedmiotu
- Przedmioty obowiązkowe dla II roku JSIM - wariant 3I+4M (Wydział Matematyki, Informatyki i Mechaniki)
Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
|
|
||
1000-112bWI2b |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Celem wykładu jest zapoznanie studentów z zasadami rozwiązywania problemów przy użyciu komputerów oraz praktyczna implementacja algorytmów. |
|
||
1000-112bWI2a |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Celem wykładu jest zapoznanie studentów z zasadami rozwiązywania problemów przy użyciu komputerów oraz praktyczna implementacja algorytmów. |
|
||
1000-112bGA2a |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Endomorfizmy przestrzeni liniowych, ślad i wyznacznik endomorfizmu, wektory i wartości własne, diagonalizacja. Iloczyny skalarne, bazy ortonormalne, ortogonalizacja Grama-Schmidta, kryterium Sylvestera, macierz Grama, iloczyn wektorowy. Przekształcenia przestrzeni euklidesowych liniowych, izometrie, macierze ortogonalne, przekształcenia samosprzężone i ich diagonalizacja, iloczyny hermitowskie i diagonalizacja przekształceń unitarnych. Formy dwuliniowe i ich diagonalizacja, kryterium Sylvestera o bezwładności. Przestrzenie i przekształacenia afiniczne, bazy punktowe, przestrzenie i przekształcenia styczne. Przestrzenie euklidesowe afiniczne, ich izometrie, odległość, miara objętości. Funcje wielomianowe, hiperpowierzchnie stopnia dwa w rzeczywistej przestrzeni afinicznej. Elementy teorii kategorii. |
|
||
1000-112bGA2* |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
|
|
||
1000-112bAM2a |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Przedmiot jest kontynuacją wykładu z Analizy Matematycznej I.1. Materiał obejmuje rachunek różniczkowy i całkowy jednej zmiennej: od pojęcia pochodnej i jego zastosowań (reguła de l’Hospitala, wielomiany Taylora), poprzez teorię ciągów i szeregów funkcyjnych (kryterium Weierstrassa zbieżności jednostajnej, twierdzenie Arzeli-Ascoliego), własności szeregów potęgowych, po teorię całki Riemanna, własności całek niewłaściwych i ich zastosowania (obliczanie długości krzywych klasy C1, funkcja Γ, wzór Wallisa). |
|
||
1000-112bAM2* |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
|
|
||
1000-112ADM2 |
Zajęcia przedmiotu
Grupy przedmiotu
Skrócony opis
Większa część wykładu i ćwiczeń rozwija dalej algebrę liniową: teoria diagonalizacji endomorfizmów, elementy algebry dwuliniowej ze szczególnym uwzględnieniem geometrii euklidesowej i towarzysząca im teoria form kwadratowych. Końcowa część przedmiotu poświęcona jest elementom algebry abstrakcyjnej, a więc teorii grup i pierścieni. |
|
||