University of Warsaw - Central Authentication System
Strona główna

Topology II

General data

Course ID: 1000-134TP2
Erasmus code / ISCED: 11.162 The subject classification code consists of three to five digits, where the first three represent the classification of the discipline according to the Discipline code list applicable to the Socrates/Erasmus program, the fourth (usually 0) - possible further specification of discipline information, the fifth - the degree of subject determined based on the year of study for which the subject is intended. / (0541) Mathematics The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Topology II
Name in Polish: Topologia II
Organizational unit: Faculty of Mathematics, Informatics, and Mechanics
Course groups: Elective courses for 1st degree studies in mathematics
ECTS credit allocation (and other scores): 6.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
Type of course:

elective courses

Prerequisites:

Topology I 1000-113aTP1a

Short description:

The course starts from the notion of a fundamental group of a space and its relations to the theory of covering spaces. The second part is devoted to a brief introduction to singular homology theory of topological spaces. The last few lectures should present important applications of previously introduced concepts.

Full description:

Homotopy of maps. Homotopy equivalence. Compact-open topology in function spaces. Homotopy classes as arc components in mapping spaces. The fundamental group of a topological space and its properties - functoriality, dependence on the choice of the base point (2 lectures).

Covering spaces and their morphisms. Lifting of maps and homotopies. Monomorphism of fundamental groups induced by a covering. Group action on a topological space. Regular coverings. Universal covering, existence of a covering with a given fundamental group (draft construction). Classification of coverings over a given space. (4 lectures).

Chain complexes and their homology, chain homotopy. Singular homology of topological spaces, homomorphisms induced by continuous maps. Axioms for homology theory. The Mayer-Vietoris sequence. Computation of homology groups for spheres and surfaces. Examples of applications: non-existence of a retraction of a ball onto a sphere, Brouwer's fixed point theorem, Jordan's closed curve theorem, theorem on region preservation. Hurewicz theorem in dimension 1. (8 lectures).

Bibliography:

G. Bredon, Topology and Geometry. Graduate Texts in Mathematics 139, Springer-Verlag, New York 1993.

K. Janich, Topology. Springer 1984.

W. Massey, A Basic Course in Algebraic Topology. New York, 1991

Learning outcomes: (in Polish)

1.Zna definicję homotopii przekształceń i homotopijnej równoważności i rozumie czym jest homotopijna klasyfikacja przestrzeni. Zna definicję grupy podstawowej przestrzeni topologicznej z wyróżnionym punktem bazowym. Umie wykorzystywać własność funktorialności grupy podstawowej .

2.Zna definicje przestrzeni nakrywającej i morfizmu nakryć. Zna przykłady nakryć. Rozumie na czym polega własność podnoszenia przekształceń i homotopii. Zna pojęcia nakrycia regularnego i nakrycia uniwersalnego.

3.Zna pojęcie kompleksu łańcuchowego, homologii kompleksu łańcuchowego i homotopii łańcuchowej. Zna pojęcie grup syngularnych oraz rozumie czym są homorfizmy grup homologii indukowane przez funkcje ciągle.

4.Zna aksjomaty teorii homologii i ciąg Mayera - Vietorisa. Potrafi wyliczyć grupy homologii sfer, powierzchni, rozmaitości orientowalnych i nieorientowanych (najwyższy wymiar) i zawieszenia. Wie, ze grupa homologii w wymiarze 1 jest abelianizacją grupy podstawowej i umie z tego faktu korzystać.

Classes in period "Summer semester 2024/25" (past)

Time span: 2025-02-17 - 2025-06-08
Selected timetable range:
Go to timetable
Type of class:
Classes, 30 hours more information
Lecture, 30 hours more information
Coordinators: Karol Szumiło
Group instructors: Wojciech Politarczyk, Karol Szumiło
Students list: (inaccessible to you)
Credit: Course - Examination
Lecture - Examination

Classes in period "Summer semester 2025/26" (future)

Time span: 2026-02-16 - 2026-06-07

Selected timetable range:
Go to timetable
Type of class:
Classes, 30 hours more information
Lecture, 30 hours more information
Coordinators: Karol Szumiło
Group instructors: Wojciech Politarczyk, Karol Szumiło
Students list: (inaccessible to you)
Credit: Course - Examination
Lecture - Examination
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
contact accessibility statement site map USOSweb 7.1.2.0-bc9fa12b9 (2025-06-25)