Serwisy internetowe Uniwersytetu Warszawskiego Nie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Aproksymacja i złożoność

Informacje ogólne

Kod przedmiotu: 1000-135APZ Kod Erasmus / ISCED: 11.1 / (0541) Matematyka
Nazwa przedmiotu: Aproksymacja i złożoność
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Przedmioty fakultatywne dla studiów 2 stopnia na matematyce
Przedmioty fakultatywne na matematyce
Przedmioty monograficzne dla IV - V roku matematyki
Punkty ECTS i inne: 6.00
zobacz reguły punktacji
Język prowadzenia: angielski
Rodzaj przedmiotu:

fakultatywne

Skrócony opis:

Kurs jest wprowadzeniem do ogólnej teorii aproksymacji i złożonosci obliczeniowej zadań analizy numerycznej. Obejmuje zarówno klasyczną aproksymację wielomianową funkcji gładkich jak i aproksymacje bazujaca jedynie na informacji czesciowej o funkcji. Przedstawione zostana takze konstrukcje algorytmów optymalnych w danym modelu obliczeniowym.

Pełny opis:

A. Aproksymacja wielomianowa

1. Ogólne postawienie problemu, charakteryzacja elementów najlepszej aproksymacji

2. Aproksymacja w przestrzeniach Hilberta

3. Wielomiany algebraiczne i trygonometryczne, twierdzenie Weierstrassa

4. Aproksymacja trygonometryczna: operatory Fouriera i Fejera, twierdzenie Korowkina

5. Aproksymacja jednostajna: przestrzenie Haara, twierdzenie o alternansie

6. Twierdzenie o letargu

7. Twierdzenia Jacksona i Bernsteina

B. Złozonosc obliczeniowa

1. Ogólny model obliczeniowy: informacja, bład i koszt algorytmu, złozonosc problemu

2. Przypadek pesymistyczny: promien informacji, optymalnosc algorytmów liniowych

3. Splajny i algorytmy splajnowe

4. Algorytmy adaptacyjne

5. Przypadek asymptotyczny

6. Przypadek randomizacyjny

7. Złozonosc wybranych problemów

Literatura:

1. E.W. Cheney, Introduction to Approximation Theory, AMS 2000.

2. J.F. Traub, G.W. Wasilkowski, H. Wozniakowski, Information-based Complexity, Academic Press 1988.

3. L. Plaskota, Noisy Information and Computational Complexity”, Cambridge Univ. Press, 1996.

Efekty kształcenia:

Wiedza i umiejetnosci:

1. Wie czym zajmuje sie teoria aproksymacji i jakie sa podstawowe problemy.

2. Zna twierdzenia dotyczace istnienia i jednoznacznosci elementów najlepszej aproksymacji oraz aproksymacji w przestrzeniach Hilberta i funkcji ciagłych.

3. Operuje pojeciami z zakresu aproksymacji trygonometrycznej i wielomianowej.

4. Zna twierdzenie o letargu i rozumie jego konsekwencje praktyczne i teoretyczne.

5. Rozumie twierdzenia o błedzie aproksymacji w zaleznosci od regularnosci funkcji.

6. Zna modele złozonosci obliczeniowej, odróznia koszt algorytmu od złozonosci zadania. Wie co to jest bład i koszt algorytmu w przypadku pesymistycznym.

7. Rozumie problem adaptacji i zna optymalne własnosci algorytmów splajnowych.

8. Zna przypadek asymptotyczny i jego zwiazki z przypadkiem pesymistycznym.

9. Rozumie istote algorytmów randomizacyjnych, ich zalety i wady.

10. Potra przeprowadzic analize złozonosci przykładowych problemów.

Kompetencje społeczne:

1. Rozumie znaczenie aproksymacji w pracy badawczej w naukach przyrodniczych,

2. Rozumie koniecznosc badania złozonosci obliczeniowej w rozwiazywaniu problemów rzeczywistych.

Zajęcia w cyklu "Semestr zimowy 2018/19" (zakończony)

Okres: 2018-10-01 - 2019-01-25
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Wykład monograficzny, 30 godzin więcej informacji
Koordynatorzy: Leszek Plaskota
Prowadzący grup: Leszek Plaskota
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin

Zajęcia w cyklu "Semestr zimowy 2019/20" (w trakcie)

Okres: 2019-10-01 - 2020-01-27
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Leszek Plaskota
Prowadzący grup: Leszek Plaskota
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.