Serwisy internetowe Uniwersytetu Warszawskiego Nie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Optymalizacja nieliniowa

Informacje ogólne

Kod przedmiotu: 1000-135OPN Kod Erasmus / ISCED: 11.913 / (0619) Komputeryzacja (inne)
Nazwa przedmiotu: Optymalizacja nieliniowa
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Przedmioty fakultatywne dla studiów 2 stopnia na matematyce
Przedmioty fakultatywne na matematyce
Punkty ECTS i inne: 6.00
zobacz reguły punktacji
Język prowadzenia: angielski
Rodzaj przedmiotu:

fakultatywne

Skrócony opis:

Metody znajdowania ekstremów (minimów i maksimów) funkcji wielu zmiennych na zbiorach zadanych przez układ równości i nierówności nieliniowych. Metoda mnożników Lagrange'a, warunki Kuhna-Tuckera, techniki dualne. Szczególną uwagę poświęcimy optymalizacji wypukłej.

Pełny opis:

Przedmiot wykładu, zadanie optymalizacji nieliniowej w n wymiarach. Przykłady modeli praktycznych. Podstawowe wiadomości o zbiorach wypukłych. Twierdzenie o hiperpłaszczyźnie rozdzielającej i podpierającej. (2--3 wykłady)

Podstawowe wiadomości o funkcjach wypukłych. Funkcje wypukłe jedno i dwukrotnie różniczkowalne. Gradient i subgradient. Funkcje quasi- i pseudowypukłe. Zbiory podwarstwicowe, minima. (2--3 wykłady)

Struktura zbioru dopuszczalnego, kierunki dopuszczalne i poprawiające. Warunki konieczne i dostateczne optymalności. Funkcja Lagrange'a. Warunek konieczny Fritza Johna. Warunki konieczne i dostateczne

Kuhna i Tuckera. Warunki regularności. Warunki równowagi. (3--4 wykłady)

Zadania dualne i twierdzenia o dualności. Punkty siodłowe funkcji Lagrange'a, ich związki z dualnością i równaniem Kuhna-Tuckera. Liniowe zadanie komplementarności, metoda Lemkego, zastosowania w programowaniu kwadratowym. Rozwiązywanie zadań programowania kwadratowego. (3--4 wykłady)

Metody rozwiązywania zadań programowania nieliniowego. Minimalizacja bezwarunkowa nieliniowej funkcji jednej i wielu zmiennych. Przykłady metod gradientowych, gradientów sprzeżonych i metod typu metody Newtona. Przykłady metod dla zadań warunkowych: metody kierunków dopuszczalnych, zasada funkcji karnych i barierowych, metody losowe. (2--4 wykłady)

Literatura:

A.L. Peresini, F.E. Sullivan, J.J Uhl, The mathematics of nonlinear programming. Undergraduate Texts in Mathematics. Springer-Verlag, 1988

M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming; Theory and Algorithms. John Wiley and Sons, 1993.

W.I. Zangwill, Programowanie nieliniowe. WNT, Warszawa 1974.

M.D. Canon, C.D. Cullum, E. Polak, Sterowanie optymalne i programowanie matematyczne. WNT, Warszawa 1975.

J. Palczewski, Optymalizacja II, http://mst.mimuw.edu.pl/lecture.php?lecture=op2

Efekty kształcenia:

Wiedza i umiejętności:

1. wie na czym polega zadanie optymalizacji nieliniowej w n wymiarach;

2. zna podstawowe własności zbiorów wypukłych, zna twierdzenie o hiperpłaszczyźnie rozdzielającej i podpierającej;

3. zna podstawowe własności funkcji wypukłych, zna pojęcie gradientu i subgradientu funkcji wypukłej, wie co to są funkcje quasi- i pseudowypukłe;

4. umie znajdować ekstrema funkcji wielu zmiennych, wie co to jest funkcja Lagrange'a oraz jak ją wykorzystujemy przy znajdowaniu ekstremów funkcji wielu zmiennych;

Zajęcia w cyklu "Semestr zimowy 2018/19" (zakończony)

Okres: 2018-10-01 - 2019-01-25
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Przemysław Kiciak
Prowadzący grup: Przemysław Kiciak
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin

Zajęcia w cyklu "Semestr zimowy 2019/20" (w trakcie)

Okres: 2019-10-01 - 2020-01-27
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Agnieszka Wiszniewska-Matyszkiel
Prowadzący grup: Agnieszka Wiszniewska-Matyszkiel
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski.