University of Warsaw - Central Authentication System
Strona główna

Large-scale machine learning

General data

Course ID: 1000-319bBML
Erasmus code / ISCED: 11.3 The subject classification code consists of three to five digits, where the first three represent the classification of the discipline according to the Discipline code list applicable to the Socrates/Erasmus program, the fourth (usually 0) - possible further specification of discipline information, the fifth - the degree of subject determined based on the year of study for which the subject is intended. / (0612) Database and network design and administration The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Large-scale machine learning
Name in Polish: Uczenie maszynowe w dużej skali
Organizational unit: Faculty of Mathematics, Informatics, and Mechanics
Course groups: (in Polish) Grupa przedmiotów obieralnych dla informatyki magisterskiej- specjalność Systemy informatyczne
(in Polish) Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka
Elective courses for Computer Science and Machine Learning
Obligatory courses for 2nd year Machine Learning
ECTS credit allocation (and other scores): 6.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: English
Type of course:

elective monographs

Requirements:

Deep neural networks 1000-317bDNN
Natural language processing 1000-318bNLP
Statistical machine learning 1000-317bSML

Prerequisites (description):

parallel programming, computer networks, algorithms and data structures

Short description:

The goal of this course is to build the theoretical foundation and practical skills necessary to use machine learning algorithms and techniques at a large scale.

We will discuss the architecture of modern large-scale computing infrastructure (cloud datacenters, and AI and HPC supercomputers). We will present methods for distributing computations across these clusters and the fundamental algorithmic models used to estimate performance. Using examples of typical ML algorithms (decision trees, neural network training), we will demonstrate the theoretical and practical challenges of using them at the scale of a few to several hundred machines. Next, we will cover the challenges of training and using large-scale language models (LLM). The course will conclude by presenting the primary problems of using ML models in large-scale production environments.

Full description:

- Hardware: from a GPU to a datacenter, and why the architecture matters at scale

- Parallel and distributed optimization: how to parallelize algorithms and how to reason about their performance

- Parallelizing classic ML algorithms

- LLMs introduction: motivation, transformers and scaling laws

- Parallelizing LLM training: parallelization types, bottlenecks, common memory optimizations

- Datasets and benchmarking LLMs

- Handling data: an introduction to data engineering

- ML in production: risks, rewards, common problems

- Case study: ML in computational infrastructure

Bibliography:

- Scientific papers used during lectures

- “The Datacenter as a Computer: Designing Warehouse-Scale Machines”, Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle

- “Fundamentals of Data Engineering”, Joe Reis and Matt Housley

Learning outcomes: (in Polish)

Wiedza: student zna i rozumie

techniki wielkoskalowego przetwarzania danych używane w kontekście uczenia maszynowego [K_W04]

metody rozpraszania i zrównoleglania obliczeń [K_W06]

Umiejętności: student potrafi

stosować współczesne systemy rozpraszania i zrównoleglania obliczeń [K_U20]

przetwarzać duże zbiory danych [K_U21]

Kompetencje społeczne: student jest gotów do

krytycznej oceny posiadanej wiedzy i odbieranych treści [K_K01]

uznawania znaczenia wiedzy w rozwiązywaniu problemów poznawczych i praktycznych oraz zasięgania opinii ekspertów w przypadku trudności z samodzielnym rozwiązaniem problemu [K_K02]

Assessment methods and assessment criteria:

Final score based on programming assignments, points for participation in laboratories and a written exam.

Classes in period "Winter semester 2024/25" (past)

Time span: 2024-10-01 - 2025-01-26
Selected timetable range:
Go to timetable
Type of class:
Lab, 30 hours more information
Lecture, 30 hours more information
Coordinators: Marek Cygan, Krzysztof Rządca
Group instructors: Marek Cygan, Tomasz Kanas, Jakub Krajewski, Michał Krutul, Adrian Naruszko, Krzysztof Rządca
Students list: (inaccessible to you)
Credit: Examination

Classes in period "Winter semester 2025/26" (future)

Time span: 2025-10-01 - 2026-01-25

Selected timetable range:
Go to timetable
Type of class:
Lab, 30 hours more information
Lecture, 30 hours more information
Coordinators: Krzysztof Rządca
Group instructors: Jakub Krajewski, Michał Krutul, Adrian Naruszko, Krzysztof Rządca
Students list: (inaccessible to you)
Credit: Course - Examination
Lecture - Examination
Course descriptions are protected by copyright.
Copyright by University of Warsaw.
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
contact accessibility statement site map USOSweb 7.1.2.0-bc9fa12b9 (2025-06-25)