University of Warsaw - Central Authentication System
Strona główna

Obligatory courses for 2nd year Machine Learning (course group defined by Faculty of Mathematics, Informatics, and Mechanics)

Faculty: Faculty of Mathematics, Informatics, and Mechanics Courses displayed below are part of group defined by this faculty, but this faculty is not necessarily the one that organizes these courses. Read Help for more information on this subject.
Course group: Obligatory courses for 2nd year Machine Learning
other groups

Course group schedules

Filters
Please log in to gain access to additional options

Precisely - show only these courses which are related to such open registration which allows you to register for the course.

Additionally, courses which you are already registered for (or applied for registration) are also included.

If you want to change these settings permanently
edit your preferences in the My USOSweb menu.
Key
If course is offered then a registration cart will be displayed.
unavailable (log in!) - you are not logged in
unavailable - currently you are not allowed to register
register - you are allowed to register
unregister - you are allowed to unregister (or withdraw application)
applied - you applied for registration (and you can no longer withdraw it)
registered - you are registered (and you cannot unregister)
Use one of the "i" icons below for additional information.

2024Z - Winter semester 2024/25
2024 - Academic year 2024/25
2025Z - Winter semester 2025/26
2025L - Summer semester 2025/26
2025 - Academic year 2025/26
(there could be semester, trimester or one-year classes)
Actions
2024Z 2024 2025Z 2025L 2025
1000-319bINT n/a n/a n/a
Classes
Academic year 2024/25
  • Placement - 30 hours
Academic year 2025/26
  • Placement - 30 hours
Groups

Brief description

Obligatory vocational internship for students of machine learning programme.

Course page
1000-319bBML n/a
n/a n/a
Classes
Winter semester 2024/25
  • Lab - 30 hours
  • Lecture - 30 hours
Winter semester 2025/26
  • Lab - 30 hours
  • Lecture - 30 hours
Groups

Brief description

The goal of this course is to build the theoretical foundation and practical skills necessary to use machine learning algorithms and techniques at a large scale.

We will discuss the architecture of modern large-scale computing infrastructure (cloud datacenters, and AI and HPC supercomputers). We will present methods for distributing computations across these clusters and the fundamental algorithmic models used to estimate performance. Using examples of typical ML algorithms (decision trees, neural network training), we will demonstrate the theoretical and practical challenges of using them at the scale of a few to several hundred machines. Next, we will cover the challenges of training and using large-scale language models (LLM). The course will conclude by presenting the primary problems of using ML models in large-scale production environments.

Course page
1000-319bEML n/a

n/a
Classes
Winter semester 2024/25
  • Classes - 30 hours
  • Lab - 15 hours
  • Lecture - 15 hours
Winter semester 2025/26
  • Classes - 30 hours
  • Lab - 15 hours
  • Lecture - 15 hours
Summer semester 2025/26
  • Classes - 30 hours
  • Lab - 15 hours
  • Lecture - 15 hours
Groups

Brief description

The goal of the course is to learn about concepts, methods and techniques for explaining complex machine learning models. Predictive models are becoming increasingly complex, tree ensembles, deep neural networks are models with thousands of parameters. For models with such dimensionality, it is easy to lose track of what the model has learned.

During this course we will discuss tools for analysing the structure of a model treated as a black box, and analysing the predictions from the model. This will allow us to increase confidence in the model, improve model performance, and be able to extract useful knowledge from the model. We will learn about the most popular explanatory methods, discuss their strengths and weaknesses so that the class participant has the necessary competences to further explore the literature in this area.

Course page
1000-319bTML n/a n/a n/a
Classes
Academic year 2024/25
  • Lab - 60 hours
Academic year 2025/26
  • Lab - 60 hours
Groups

Brief description

During the course, both scientific and implementation-oriented projects are carried out. The first sessions are dedicated to presenting topics, followed by team formation (comprising 2 to 4 individuals) and assignment of topics.

Throughout each semester, each team prepares three presentations on the progress made.

The assessment in this course is influenced by the supervisor's feedback, as well as the final outcome in the form of a report, manuscript, or repository.

Course page
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
contact accessibility statement site map USOSweb 7.1.2.0-bc9fa12b9 (2025-06-25)