Uniwersytet Warszawski - Centralny System Uwierzytelniania
Strona główna

Przedmioty obowiązkowe dla IV roku JSIM - wariant 3I+4M (grupa przedmiotów zdefiniowana przez Wydział Matematyki, Informatyki i Mechaniki)

Jednostka: Wydział Matematyki, Informatyki i Mechaniki Zestaw przedmiotów, który widzisz poniżej został zdefiniowany przez tę jednostkę. Jednostka ta nie musi mieć jednak związku z organizacją wymienionych przedmiotów (jednostką odpowiedzialną za organizację przedmiotu jest jednostka wymieniona w odpowiedniej kolumnie w tabeli poniżej). Więcej o tym przeczytasz w Pomocy.
Grupa przedmiotów: Przedmioty obowiązkowe dla IV roku JSIM - wariant 3I+4M
wybierz inną grupę zobacz plany zajęć tej grupy
Filtry
Zaloguj się, aby uzyskać dostęp do dodatkowych opcji

Konkretniej - pokazuj tylko te przedmioty, dla których istnieje otwarta rejestracja taka, że możesz w jej ramach zarejestrować się na przedmiot.

Dodatkowo pokazywane są również te przedmioty, na które jesteś już zarejestrowany (lub składałeś prośbę o zarejestrowanie).

Jeśli chcesz zmienić te ustawienia na stałe, edytuj swoje preferencje w menu Mój USOSweb.
Legenda
Jeśli przedmiot jest prowadzony w danym cyklu dydaktycznym, to w odpowiedniej komórce pojawi się koszyk rejestracyjny. Ikona koszyka zależy od tego, czy możesz się rejestrować na dany przedmiot.
niedostępny (zaloguj się!) - nie jesteś zalogowany
niedostępny - aktualnie nie możesz się rejestrować
zarejestruj - możesz się zarejestrować
wyrejestruj - możesz się wyrejestrować (lub wycofać prośbę)
prośba - złożyłeś prośbę o zarejestrowanie (i nie możesz jej już wycofać)
zarejestrowany - jesteś pomyślnie zarejestrowany (i nie możesz się wyrejestrować)
Kliknij na ikonę "i" przy koszyku, aby uzyskać dodatkowe informacje.

2023Z - Semestr zimowy 2023/24
2023L - Semestr letni 2023/24
2024Z - Semestr zimowy 2024/25
2024L - Semestr letni 2024/25
(zajęcia mogą być semestralne, trymestralne lub roczne)
Opcje
2023Z 2023L 2024Z 2024L
1000-113bAG1* brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 45 godzin
  • Wykład - 30 godzin
Semestr zimowy 2024/25
  • Ćwiczenia - 45 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

To jest rozszerzona wersja wykładu Algebra 1; wzbogacona o dodatkowy materiał dotyczący teorii grup i teorii pierścieni.

Podstawowe struktury algebraiczne: grupy, pierścienie przemienne z 1 i ciała. Teoria grup: podgrupy normalne, grupy ilorazowe, działania grup na zbiorach, informacje o klasyfikacji skończenie generowanych grup abelowych i twierdzeniu Sylowa. Teoria pierścieni: podzielność, rozkład na czynniki, pojęcie ideału oraz pierścienia ilorazowego. Teoria ciał: rozszerzanie ciała przez dołączenie pierwiastków wielomianu, informacja o istnieniu algebraicznego domknięcia ciała.

Strona przedmiotu
1000-113bAG1a brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 45 godzin
  • Wykład - 30 godzin
Semestr zimowy 2024/25
  • Ćwiczenia - 45 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe struktury algebraiczne: grupy, pierścienie przemienne z 1 i ciała.

Teoria grup: podgrupy normalne, grupy ilorazowe, działania grup na zbiorach, informacje o klasyfikacji skończenie generowanych grup abelowych i twierdzeniu Sylowa.

Teoria pierścieni: podzielność, rozkład na czynniki, pojęcie ideału oraz pierścienia ilorazowego.

Teoria ciał: rozszerzanie ciała przez dołączenie pierwiastków wielomianu, informacja o istnieniu algebraicznego domknięcia ciała.

Strona przedmiotu
1000-134FAN brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe pojęcia analizy zespolonej, ilustracja jej związków z topologią, algebrą i geometrią, w tym: pochodna w dziedzinie zespolonej i konsekwencje różniczkowalności w sensie zespolonym. Równania Cauchy’ego-Riemanna. Wzór całkowy Cauchy’ego, analityczność funkcji holomorficznych. Zasadnicze Twierdzenie Algebry. Klasyfikacja izolowanych punktów osobliwych. Twierdzenie o residuach i jego zastosowania. Twierdzenie Riemanna.

Strona przedmiotu
1000-134FAN* brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe pojęcia analizy zespolonej, ilustracja jej związków z topologią, algebrą i geometrią, w tym: pochodna w dziedzinie zespolonej i konsekwencje różniczkowalności w sensie zespolonym. Równania Cauchy’ego-Riemanna. Wzór całkowy Cauchy’ego, analityczność funkcji holomorficznych. Zasadnicze Twierdzenie Algebry. Klasyfikacja izolowanych punktów osobliwych. Twierdzenie o residuach i jego zastosowania. Twierdzenie Riemanna.

Strona przedmiotu
1000-114bRRZa brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 45 godzin
  • Wykład - 30 godzin
Semestr letni 2024/25
  • Ćwiczenia - 45 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe zagadnienia równań różniczkowych zwyczajnych, ilustracja związków z mechaniką klasyczną i modelowaniem zjawisk biologicznych. Zagadnienie istnienia i jednoznaczności rozwiązań równań różniczkowych zwyczajnych. Twierdzenia o przedłużaniu i prostowaniu rozwiązań. Metody rozwiązywania podstawowych typów równań, całka pierwsza i czynnik całkujący. Układy równań różniczkowych liniowych, równania liniowe wyższych rzędów. Pole wektorowe, potok pola, portret fazowy. Stabilność w sensie Lapunowa. Równania mechaniki klasycznej: ruch w polu sił centralnych, prawa Keplera.

Strona przedmiotu
1000-114bRRZIb brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Semestr letni 2024/25
  • Ćwiczenia - 30 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Równania różniczkowe zwyczajne, ich własności i przykłady zastosowań. Metody rozwiązywania RRZ: analityczne i numeryczne. Część ćwiczeń w laboratorium komputerowym, ilustrującym możliwości pakietów komputerowych w tym zakresie. Alternatywnie możesz wybrać 1000-114bRRZa o nieco innym charakterze.

Strona przedmiotu
1000-116bST brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Semestr zimowy 2024/25
  • Ćwiczenia - 30 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład jest wprowadzeniem do klasycznej statystyki matematycznej i skupia się na ścisłym przedstawieniu teorii, która stanowi podstawę technik statystycznych stosowanych w analizie danych. Kurs koncentruje się na parametrycznych modelach statystycznych, ze szczególnym uwzględnieniem rodzin wykładniczych. W trakcie zajęć wprowadzane są metody estymacji parametrów, przedziały ufności, testowanie hipotez oraz własności teoretyczne tych technik. Część związana z predykcją ograniczona jest do dokładnego omówienia modeli liniowych.

Alternatywnie można wybrać 1000-714SAD o bardziej praktycznym charakterze.

Strona przedmiotu
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.0.0-319af3e59 (2024-10-23)