Uniwersytet Warszawski - Centralny System Uwierzytelniania
Strona główna

Przedmioty monograficzne dla matematyki 2 stopnia (grupa przedmiotów zdefiniowana przez Wydział Matematyki, Informatyki i Mechaniki)

Jednostka: Wydział Matematyki, Informatyki i Mechaniki Zestaw przedmiotów, który widzisz poniżej został zdefiniowany przez tę jednostkę. Jednostka ta nie musi mieć jednak związku z organizacją wymienionych przedmiotów (jednostką odpowiedzialną za organizację przedmiotu jest jednostka wymieniona w odpowiedniej kolumnie w tabeli poniżej). Więcej o tym przeczytasz w Pomocy.
Grupa przedmiotów: Przedmioty monograficzne dla matematyki 2 stopnia
wybierz inną grupę zobacz plany zajęć tej grupy
Filtry
Zaloguj się, aby uzyskać dostęp do dodatkowych opcji

Konkretniej - pokazuj tylko te przedmioty, dla których istnieje otwarta rejestracja taka, że możesz w jej ramach zarejestrować się na przedmiot.

Dodatkowo pokazywane są również te przedmioty, na które jesteś już zarejestrowany (lub składałeś prośbę o zarejestrowanie).

Jeśli chcesz zmienić te ustawienia na stałe, edytuj swoje preferencje w menu Mój USOSweb.
Legenda
Jeśli przedmiot jest prowadzony w danym cyklu dydaktycznym, to w odpowiedniej komórce pojawi się koszyk rejestracyjny. Ikona koszyka zależy od tego, czy możesz się rejestrować na dany przedmiot.
niedostępny (zaloguj się!) - nie jesteś zalogowany
niedostępny - aktualnie nie możesz się rejestrować
zarejestruj - możesz się zarejestrować
wyrejestruj - możesz się wyrejestrować (lub wycofać prośbę)
prośba - złożyłeś prośbę o zarejestrowanie (i nie możesz jej już wycofać)
zarejestrowany - jesteś pomyślnie zarejestrowany (i nie możesz się wyrejestrować)
Kliknij na ikonę "i" przy koszyku, aby uzyskać dodatkowe informacje.

2023Z - Semestr zimowy 2023/24
2023L - Semestr letni 2023/24
2024Z - Semestr zimowy 2024/25
2024L - Semestr letni 2024/25
(zajęcia mogą być semestralne, trymestralne lub roczne)
Opcje
2023Z 2023L 2024Z 2024L
1000-1M13AB brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład monograficzny - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład "Algebry Banacha" ma na celu zaznajomienie uczestników z podstawową teorią algebr Banacha ze szczególnym uwzględnieniem przypadku przemiennego.

Strona przedmiotu
1000-1M24APH brak brak brak
Zajęcia przedmiotu
Semestr letni 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Teoria algebr operatorów zajmuje się badaniem rodzin operatorów na przestrzeni Hilberta. Wyrosła z próby stworzenia przez von Neumanna aparatu matematycznego do opisu mechaniki kwantowej. Wykład zaczniemy od wprowadzenia do ogólnej teorii, obrazując analogie z teorią miary. Następnie skupimy się na przykładach, głównie pochodzących z teorii grup. W tym kontekście pojawia się wiele pojęć, które można zdefiniować dla ogólnych algebr operatorów. Ta motywacja posłuży nam do głębszego zbadania algebr von Neumanna, szczególnej klasy algebr operatorów o bardzo silnych związkach z teorią miary i teorią ergodyczną.

Strona przedmiotu
1000-1M10AF brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Głównym punktem wykładu będzie rozkład Paley-Littlewooda, będący rozkładem jedności na poziomie transformaty Fouriera. W naturalny sposób wprowadza to przestrzenie funkcyjne Besova B^s_{p,q} i Triebla F^s_{p,q} -- uogólnienia klasycznych przestrzeni Sobolowa na przestrzenie ułamkowe. Własności takiego spojrzenia powiązane są z osobliwymi operatorami określonymi przez mnożniki fourierowskie. Chodzi tu o twierdzenie Marcinkiewicza uogólniające tożsamość Persevala na przestrzenie L_p. By wykroczyć poza teorie liniowe wymagane jest uogólnienie mnożenia, tj. wprowadzimy pojęcie paraproduktu.

Strona przedmiotu
1000-1M10AH2 brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wyklad "Analiza Harmonicza 2" jest planowany jako kontynuacja wykładu Analiza Harmoniczna, lecz zaliczenie tego ostatniego przedmiotu nie jest wymagane.

Strona przedmiotu
1000-719DAV brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2024/25
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Poznanie technik analizy i wizualizacji danych w formie statycznej oraz interaktywnej.

Strona przedmiotu
1000-1M15DM brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem zajęć jest zapoznanie przyszłych nauczycieli matematyki z uwarunkowaniami zawodu nauczyciela.

Strona przedmiotu
1000-1M23EK brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład monograficzny - 30 godzin
Grupy przedmiotu

Skrócony opis

Ekwiwariantna teoria kohomologii Borela jest wprowadzona metodami topologicznymi i różniczkowymi. Stosowana jest do klasycznych przestrzeni geometri algebraicznej, takich jak rozmaitości flag i Grassmaniany. Własności kohomologii ekwiwariantnych rozmaitości rzutowych są omówione. Zastosowania wykorzystują ekwiwariantną formalność i twierdzenie o lokalizacji dla działania torusa. Omówiony jest ekwiwariantny rachunek Schuberta.

Strona przedmiotu
1000-1M07ET brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład monograficzny - 30 godzin
Grupy przedmiotu

Skrócony opis

Na wykładzie zostaną omówione podstawowe pojęcia i twierdzenia Teorii Kategorii. Ostatnia część wykładu będzie poświęcona bardziej specyficznym zastosowaniom. Planuję omówić różne aspekty

toposów Grothendiecka.

Strona przedmiotu
1000-1M22MIK brak brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-1M24FRC brak brak brak
Zajęcia przedmiotu
Semestr letni 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-1M23FS brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład monograficzny - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-1M24FSM brak brak brak
Zajęcia przedmiotu
Semestr letni 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Kurs poświęcony jest najważniejszym funkcjom specjalnym i ich zastosowaniom do równań różniczkowych.

Strona przedmiotu
1000-1M22GAD brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowym celem jest zrozumienie różnych technik stosowanych do badania rozmaitości zdefiniowanych nad ciałami o dodatniej charakterystyce i zastosowanie tych metod do badania rozmaitości w charakterystyce zero.

Pokazane będą też znaczące różnice występujące między rozmaitościami w charakterystyce zero i w charakterystyce dodatniej.

Strona przedmiotu
1000-1M14GM3 brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Geometria rzutowa: ujęcie od strony geometrycznej. Płaszczyzna rzutowa (rzeczywista), przekształcenia rzutowe prostych, pęków, stożkowych, pęków stycznych do stożkowych. Twierdzenia Desarguesa, Pappusa, Pascala, Brianchona. Dualność: biegun i biegunowa względem okręgu i stożkowych. Sprzężenie biegunowe. Inwolucje rzutowe, twierdzenia inwolucyjne. Pęki okręgów i stożkowych jako generatory inwolucji. Twierdzenie Ponceleta. Stożkowe w ujęciu rzutowym, twierdzenia Steinera i Braikenridge'a-Maclaurina. Rzutowe określenie ogniska i kierownicy stożkowych. Punkty urojone przecięcia prostej ze stożkową w ujęciu czysto geometrycznym.

Strona przedmiotu
1000-1M23TMW brak brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Geometryczna teoria miary polega na badaniu obiektów geometrycznych metodami teorii miary. Z rozmaitością zanurzoną w Rn można stowarzyszyć miarę Hausdorff obciętą do danej rozmaitości lub do wiązki stycznej tej rozmaitości. Rozważając ciąg takich miar i przechodząc do słabej granicy dostajemy bardziej ogólne obiekty, np. varifoldy lub prądy. Badamy funkcjonały określone na takich obiektach oraz ich punkty krytyczne, tj. stacjonarne varifoldy (uogólnienie powierzchni minimalnych). Wykład ma na celu zaprezentowanie aktualnej wiedzy w tej dziedzinie w stopniu pozwalającym na podjęcie samodzielnych badań. Zaczniemy od klasycznych wzorów area i coarea oraz wprowadzimy pojęcie prostowalności. Następnie omówmy podstawową teorię varifoldów. Na koniec skupimy się na kluczowym pojęciu eliptyczności funkcjonałów, które nie jest do tej pory dość dobrze zbadane.

Strona przedmiotu
1000-1M23GK brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład monograficzny - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład dedykowany jest studentom zainteresowanym szeroko pojętą analizą funkcjonalną, matematycznym językiem wykorzystywanym w mechanice kwantowej bądź chcącym poznać nowoczesną, ale elementarną, matematykę.

Grafy kwantowe to pojawiający się w kwantowej informacji naturalny odpowiednik grafów. Zaczniemy od krótkiego wprowadzenia do teorii informacji kwantowej, niezbędnego, aby umotywować pojęcie grafu kwantowego. Następnie wprowadzimy trzy równoważne definicje grafu kwantowego, sposoby przechodzenia między nimi oraz użyteczność każdej z nich. Pokażemy też, w jaki sposób skonstruować wiele przykładów grafów kwantowych. W ostatniej części kursu skupimy się na własnościach losowych grafów kwantowych: udowodnimy, że typowy graf kwantowy nie posiada żadnych nietrywialnych symetrii.

Strona przedmiotu
1000-1M24GPA brak brak brak
Zajęcia przedmiotu
Semestr letni 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-1M23HS brak brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-1M23ITM brak brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Tematem wykładu będą teoriomnogościowe własności ideałów zbiorów miary Lebesgue’a zero i zbiorów pierwszej kategorii Baire’a oraz związanych z tymi ideałami innych klas małych podzbiorów prostej rzeczywistej.

Strona przedmiotu
1000-1M22IF2 brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład jest kontynuacją wykładu Inżynieria Finansowa. Na wykładzie będą przedstawione wybrane metody wyceny instrumentów opcyjnych na stopę procentową oraz praktyki rynkowe wyceny opcji walutowych. Ćwiczenia będą się koncentrowały na przykładach numerycznych ilustrujących omawiane na wykładzie metody.

Strona przedmiotu
1000-1M23KMO brak brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przedmiot jest wprowadzeniem do abstrakcyjnej teorii homotopii w języku kategorii modelowych. Centralnymi pojęciami są słabe systemy faktoryzacji, kategorie modelowe, funktory Quillena i równoważności Quillena. Celem wykładu jest rozwinięcie teorii homotopijnej niezmienniczości w kategoriach modelowych i metod porównywania różnych teorii homotopii oraz przedstawienie zastosowań w topologii algebraicznej i algebrze homologicznej.

Strona przedmiotu
1000-1M20KNW brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Kurs ma na celu wprowadzenie do teorii kwantowych i kategoryjnych

niezmienników węzłów. Po wyjaśnieniu klasycznych wielomianów

Aleksandra, Conwaya, Jonesa i HOMFLY-PT, skwantujemy je za pomocą reprezentacji grup kwantowych i funktora Reshetikhina-Turaeva oraz skategoryfikujemy do homologii Khovanova-Lee. Kurs oparty jest na

wybranych fragmentach literatury wymienionej poniżej. Podane zostaną

sugestie dotyczące dalszej lektury.

Strona przedmiotu
1000-1M23LNT brak brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-1M24LUD brak brak brak
Zajęcia przedmiotu
Semestr letni 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest zapoznanie uczestników z podstawami teorii losowych układów dynamicznych. Wykład będzie ilustrowany przykładami zastosowań, w tym - wybranymi publikacjami.

Strona przedmiotu
1000-1M23MAM brak brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Wykład monograficzny - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład wprowadza w teorię modeli agentowych opartych o równania zwyczajne i ich dyskretyzacje . Układy te pojawiają się naturalnie w teorii zachowań kolektywnych takich jak tworzenie się stad zwierząt, ławic ryb, czy opinii w różnych grupach. W analizie będziemy wprowadzali pojęcia z uczenia maszynowego w celu otrzymania pożądanych modeli.

Wykład prowadzony we współpracy z dr. Jackiem Cyranką z Instytutu Informatyki oraz dr Janek Peszkiem z Instytutu Matematyki Stosowanej i Mechaniki.

Strona przedmiotu
1000-1M24MAI brak brak brak
Zajęcia przedmiotu
Semestr letni 2024/25
  • Wykład monograficzny - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-1M24MAS brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2024/25
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Program zajęć koncentruje się na metodach analizy nieefektywności rynków finansowych w oparciu o dane. Wykład wprowadza słuchaczy w zakres podstawowych pojęć i teorii ekonomicznych związanych z wyceną instrumentów finansowych. Omówione zostaną techniki agregacji danych różnych typów (numeryczne, tekstowe) pochodzących ze źródeł wielu rodzajów oraz ich analizy w środowisku chmurowym wykorzystywanym również do budowy narzędzi służących do automatyzacji realizacji strategii zarządzania portfelem aktywów, w tym tych bazujących na uczeniu maszynowym. Efektywność zaproponowanych rozwiązań będzie oceniana z uwzględnieniem rzeczywistych modeli bazowych np. indeksów giełdowych.

Strona przedmiotu
1000-1M22NUM brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2024/25
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przyjrzymy się specyfice wybranych zadań obliczeniowych spotykanych w zagadnieniach analizy danych oraz uczenia maszynowego oraz własnościom algorytmów używanych do ich rozwiązywania.

Strona przedmiotu
1000-1M23MWR brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Wykład - 30 godzin
Semestr zimowy 2024/25
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem przedmiotu jest zapoznanie studentów z wybranymi metodami rachunku wariacyjnego w zastosowaniu do równań różniczkowych cząstkowych. W szczególności, z wykorzystaniem bezpośredniej metody rachunku wariacyjnego, twierdzenia o przełęczy górskiej oraz techniki rozmaitości Nehariego wykażemy istnienie rozwiązań dla pewnych problemów eliptycznych.

Strona przedmiotu
1000-1M08MG brak brak
Zajęcia przedmiotu
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2024/25
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład z modelowania geometrycznego dotyczy krzywych i powierzchni Beziera i B-sklejanych (w tym NURBS), powszechnie stosowanych w grafice komputerowej i w pakietach projektowania wspomaganego komputerem.

W przypadku braku studentów obcojęzycznych, zajęcia będą prowadzone po polsku.

Strona przedmiotu
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.0.0-895557ea9 (2024-09-26)