Uniwersytet Warszawski - Centralny System Uwierzytelniania
Strona główna

Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka (oferowane przez MIM) (grupa przedmiotów zdefiniowana przez Wydział Matematyki, Informatyki i Mechaniki)

Jednostka: Wydział Matematyki, Informatyki i Mechaniki Zestaw przedmiotów, który widzisz poniżej został zdefiniowany przez tę jednostkę. Jednostka ta nie musi mieć jednak związku z organizacją wymienionych przedmiotów (jednostką odpowiedzialną za organizację przedmiotu jest jednostka wymieniona w odpowiedniej kolumnie w tabeli poniżej). Więcej o tym przeczytasz w Pomocy.
Grupa przedmiotów: Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka (oferowane przez MIM)
wybierz inną grupę zobacz plany zajęć tej grupy
Filtry
Zaloguj się, aby uzyskać dostęp do dodatkowych opcji

Konkretniej - pokazuj tylko te przedmioty, dla których istnieje otwarta rejestracja taka, że możesz w jej ramach zarejestrować się na przedmiot.

Dodatkowo pokazywane są również te przedmioty, na które jesteś już zarejestrowany (lub składałeś prośbę o zarejestrowanie).

Jeśli chcesz zmienić te ustawienia na stałe, edytuj swoje preferencje w menu Mój USOSweb.
Legenda
Jeśli przedmiot jest prowadzony w danym cyklu dydaktycznym, to w odpowiedniej komórce pojawi się koszyk rejestracyjny. Ikona koszyka zależy od tego, czy możesz się rejestrować na dany przedmiot.
niedostępny (zaloguj się!) - nie jesteś zalogowany
niedostępny - aktualnie nie możesz się rejestrować
zarejestruj - możesz się zarejestrować
wyrejestruj - możesz się wyrejestrować (lub wycofać prośbę)
prośba - złożyłeś prośbę o zarejestrowanie (i nie możesz jej już wycofać)
zarejestrowany - jesteś pomyślnie zarejestrowany (i nie możesz się wyrejestrować)
Kliknij na ikonę "i" przy koszyku, aby uzyskać dodatkowe informacje.

2022Z - Semestr zimowy 2022/23
2022L - Semestr letni 2022/23
2023Z - Semestr zimowy 2023/24
2023L - Semestr letni 2023/24
(zajęcia mogą być semestralne, trymestralne lub roczne)
Opcje
2022Z 2022L 2023Z 2023L
1000-135ALP brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przedmiot stanowi wprowadzenie do algebry przemiennej i jest wymagany do

rejestracji na przedmiot geometria algebraiczna. Na wykładzie zostaną

wprowadzone pojęcia związane z pierścieniami przemiennymi i modułami nad

tymi pierścieniami, i zostaną dowiedzione podstawowe twierdzenia dotyczące

tych klas obiektów algebraicznych; ważną klasą rozważanych pierścieni będą

pierścienie noetherowskie.

Strona przedmiotu
1000-135AGL brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Klasyczne grupy liniowe, abstrakcyjne grupy Lie, grupy zwarte.

Odpowiedniość grup i algebr Liego, czyli klasyczna teoria Liego. Odwzorowanie Exp.

Abstrakcyjne podejście do algebr Liego. Klasyfikacja prostych algebr Liego

Reprezentacje klasycznych grup i algebr Lie przez najwyzsze wagi. Przestrzenie jednorodne.

Strona przedmiotu
1000-135ASW brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład ma na celu przedstawienie klasycznych rezultatów dotyczacych struktury i teorii reprezentacji

liniowych algebr skonczonego wymiaru nad ciałem. Omówione beda: odpowiedniosc pomiedzy teoria

modułów i teoria reprezentacji, moduły proste, radykał algebry i klasykacja półprostych algebr łacznych.

Podane beda zastosowania do teorii reprezentacji grup skonczonych, poprzez rezultaty dotyczace algebr

grupowych i teorie charakterów grup. Omówione zostana przykłady zastosowan. Podane beda podstawowe

informacje o skonczenie wymiarowych algebrach Lie’go i ich reprezentacjach. Jako narzedzie w tej teorii,

omówione zostana algebry obwiednie i ich własnosci.

Strona przedmiotu
1000-2M02AA brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Teoria gier została zapoczątkowana przez von Neumanna i Morgensterna jako matematyczna teoria racjonalnego zachowania. Gra składa się z opisu możliwych posunięć i definicji funkcji zysku dla każdego z graczy. Oczywiście, każdy z graczy stara się wybrać taką strategię, jaka maksymalizuje jego zysk. Najczęściej w teorii gier uważa się, że racjonalne zachowanie graczy jest dobrze opisywane pojęciem równowagi Nasha.

Strona przedmiotu
1000-2N00ALG brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład jest kontynuacją wykładu "Algorytmy i struktury danych". Celem zajęć jest zaznajomienie studentów z technikami konstrukcji efektywnych algorytmów dla różnych rodzajów problemów kombinatorycznych.

Wymagania wstępne: Algorytmy i struktury danych

Strona przedmiotu
1000-2M12APW brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład poświęcony będzie ponadwielomianowym algorytmom dla problemów NP-trudnych, ze szczególnym uwzględnieniem algorytmów parametryzowanych.

Wykład jest pomyślany dla studentów i doktorantów zainteresowanych algorytmiką i kombinatoryką, i rozważających pracę naukową (choćby na poziomie pracy magisterskiej).

Strona przedmiotu
1000-2N09ALT brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład jest poświęcony omówieniu podstawowych metod projektowania i analizowania algorytmów związanych z tekstami. Zasadniczym problemem będzie zrozumienie struktury wielu skomplikowanych algorytmów oraz różnego typu techniki algorytmiczne i struktury danych (drzewa sufiksowe, grafy podsłów). Teksty są prostym a jednocześnie powszechnym typem informacji, ale będą rozważane zarówno standardowe teksty (jako ciągi symboli), jak również bardziej strukturalne formy: teksty dwuwymiarowe (związki z grafiką) i drzewa etykietowane (struktury występujące w XML i biologii obliczeniowej). Klasyczne problemy algorytmiczne związane są z szukaniem (lub wykrywaniem) wzorca, regularnością i kompresją tekstów. Ponadto rozważymy problemy związane z biologią obliczeniową (uliniowienie, drzewa ewolucyjne) oraz ze "stringologią" fraktali dwuwymiarowych. Wiele ciekawych tekstów jest zadanych w formie skompresowanej, rozmiar rzeczywistego tekstu może być wykładniczy w stosunku do rozmiaru n jego opisu.

Strona przedmiotu
1000-1M10AF brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Głównym punktem wykładu będzie rozkład Paley-Littlewooda, będący rozkładem jedności na poziomie transformaty Fouriera. W naturalny sposób wprowadza to przestrzenie funkcyjne Besova B^s_{p,q} i Triebla F^s_{p,q} -- uogólnienia klasycznych przestrzeni Sobolowa na przestrzenie ułamkowe. Własności takiego spojrzenia powiązane są z osobliwymi operatorami określonymi przez mnożniki fourierowskie. Chodzi tu o twierdzenie Marcinkiewicza uogólniające tożsamość Persevala na przestrzenie L_p. By wykroczyć poza teorie liniowe wymagane jest uogólnienie mnożenia, tj. wprowadzimy pojęcie paraproduktu.

Strona przedmiotu
1000-135AF
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe pojęcia analizy funkcjonalnej, ilustracja jej związków z geometrią i algebrą liniową, analizą matematyczną i topologią, w tym: pojęcie przestrzeni Banacha oraz przestrzeni Hilberta, pojęcie operatora oraz funkcjonału liniowego, ciągłego, twierdzenie Hahna-Banacha, twierdzenie Banacha-Steinhausa, twierdzenie o odwzorowaniu otwartym.

Strona przedmiotu
1000-135AF* brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Zapoznanie z podstawowymi pojęciami, twierdzeniami i metodami liniowej analizy funkcjonalnej.

Strona przedmiotu
1000-1M10AH brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład "Analiza harmoniczna" jest przeznaczony dla studentów zainteresowanych szeroko pojętą analizą. Jego celem jest przekazanie wiedzy na temat klasycznych wyników przemiennej analizy harmonicznej i fourierowskiej. Przedmiot ten stanowi doskonały wstęp do nauki zagadnień bardziej szczegółowych oraz abstrakcyjnych. Wymagana jest znajomość analizy na poziomie pierwszych dwóch lat studiów oraz wiedza wchodząca w zakres funkcji analitycznych i analizy funkcjonalnej I (zaliczanie równoczesne tych wykładów jest wystarczające).

Strona przedmiotu
1000-1M10AH2 brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wyklad "Analiza Harmonicza 2" jest planowany jako kontynuacja wykładu Analiza Harmoniczna, lecz zaliczenie tego ostatniego przedmiotu nie jest wymagane.

Strona przedmiotu
1000-1M22ANG brak brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-135AN brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Metody numerycznego rozwiązywania ważnych zadań obliczeniowych matematyki stosowanej: zagadnienia własnego, wielkich układów równań liniowych, układów równań nieliniowych oraz całkowania wielowymiarowego.

Strona przedmiotu
1000-135AP brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest przedstawienie podstaw ekonomicznych oraz narzędzi matematycznych służących znajdowaniu optymalnych inwestycji w warunkach niepewności. W ramach wykładu zostaną omówione rozwiązania klasycznego modelu Markowitza w kilku podstawowych wersjach: dla wielu instrumentów

ryzykownych, dla instrumentów ryzykownych oraz instrumentu bezryzykownego, zarówno w przypadku braku ograniczen na krótka sprzedaż jak też w obecności tych ograniczeń. Wprowadzone będą także nowoczesne miary ryzyka VaR i CvaR, omówione ich podstawowe własnosci oraz wykorzystanie do znajdowania portfeli optymalnych.

Strona przedmiotu
1000-135ANZ brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Twierdzenie Weierstrassa (o rozkładzie na iloczyn) i twierdzenie Mittag--Lefflera. Twierdzenie Rungego.

Funkcje wieloznaczne, przedłużenia analityczne, monodromia.

Powierzchnie Riemanna. Funkcje analityczne na powierzchniach Riemanna. Przykłady i informacje na temat podstawowych zagadnień teorii powierzchni Riemanna.

Podstawowe pojęcia teorii funkcji analitycznych wielu zmiennych zespolonych; równania Cauchy--Riemanna, rozwijalność w szeregi potęgowe, przedłużenia analityczne, problemy Cousina.

Strona przedmiotu
1000-135APZ brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Kurs jest wprowadzeniem do ogólnej teorii aproksymacji i złożonosci obliczeniowej zadań analizy numerycznej. Obejmuje zarówno klasyczną aproksymację wielomianową funkcji gładkich jak i aproksymacje bazujaca jedynie na informacji czesciowej o funkcji. Przedstawione zostana takze konstrukcje algorytmów optymalnych w danym modelu obliczeniowym.

Strona przedmiotu
1000-2M22AN brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Algorytmiczna analiza automatów o nieskończenie wielu stanach: automaty ze stosem, sieci Petriego, automaty nad alfabetem nieskończonym.

Strona przedmiotu
1000-2M22AW brak brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Najważniejsze twierdzenia dotyczące tematyki automatów ważonych. Przykłady zastosowań w innych dziedzinach.

Strona przedmiotu
1000-2M22ALG brak brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład opisuje związki pomiędzy logiką a automatami skończonymi. Punktem wyjścia jest klasyczne twierdzenie, że automaty skończone opisują dokładnie te języki, które można zdefiniować w logice monadycznej drugiego rzędu. Wykład omawia daleko idące rozszerzenia tego twierdzenia, dotyczące przede wszystkim obiektów nieskończonych, takich jak nieskończone słowa czy drzewa. Ważną rolę w teorii odgrywają pewne gry matematyczne, przede wszystkim tzw. gry parzystości, w których rozgrywka jest nieskończona.

Strona przedmiotu
1000-1M11BN brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

This course studies graphical models, a subject that is an interaction between probability theory and graph theory. The topic provides a natural tool for dealing with a large class of problems containing uncertainty and complexity. These features occur throughout applied mathematics and engineering and therefore the material treated has diverse applications in the engineering sciences.

Strona przedmiotu
1000-2M19TCH brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Program obejmuje dwa obszary zastosowań informatyki będące obecnie w kręgu głównych zainteresowań biznesu z uwagi na oferowane lub spodziewane źródła przewagi konkurencyjnej: chmurę obliczeniową i uczenie maszynowe. Ujęcie zagadnień z zachowaniem podejścia, w którym środowiska chmurowe (głównie typu IaaS i PaaS) są przede wszystkim kontekstem wykonawczym pozwoli skupić się słuchaczom na rozwiązywaniu konkretnych problemów manifestując tym samym podejście pragmatyczne. Całości towarzyszy wspólna praca wraz z partnerem biznesowym nad projektem integrującym tematy z zakresu programu przedmiotu, którego wykonanie jest wymaganym elementem uzyskania oceny. Wybór konkretnych zagadnień wykładu zależy od scenariuszy przedstawionych przez partnera biznesowego, lecz będzie obejmować co najmniej modelowanie matematyczne, szeregi czasowe i techniki przetwarzania języka naturalnego (NLP).

Strona przedmiotu
1000-2M03DM brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przedstawienie głównych zagadnień w dziedzinie eksploracji danych (data mining) i metod ich rozwiązywania; omówienia podstawowych algorytmów i ich efektywnych realizacji na dużych zbiorach danych dla trudnych problemów takich, jak reguły asocjacyjne, redukty, dyskretyzacja atrybutów ciągłych, wzorce czasowe, drzewo decyzyjne; przedstawienie nowoczesnych technik obliczeń takich, jak równoległe przetwarzania, obliczenia ewolucyjne, heurystyki za pomocą standardowych baz danych lub logicznie zbudowanych struktur danych.

Strona przedmiotu
1000-1M15DM brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem zajęć jest zapoznanie przyszłych nauczycieli matematyki z uwarunkowaniami zawodu nauczyciela.

Strona przedmiotu
1000-135EKN brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Studenci, którzy wcześniej zaliczyli przedmiot monograficzny Ekonometria (1000-1M02EK) nie mogą zaliczać Ekonometrii (1000-135EKN).

Strona przedmiotu
1000-2M13DZD brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przedmiot ugruntowuje teoretyczną i praktyczną wiedzę z zakresu metod uczenia maszynowego i eksploracji danych, pod kątem zastosowań związanych z dużymi, heterogenicznymi, rozproszonymi i dynamicznie przyrastającymi źródłami danych. Omawiana jest problematyka zapewnienia wystarczającej wiarygodności i jakości danych celem uczenia skutecznych modeli klasyfikacji, predykcji itd., jak i utrzymania skuteczności takich modeli jako składowych większych systemów informatycznych. Odwołujemy się do szerokiego zakresu praktycznych form i źródeł danych, w szczególności danych generowanych maszynowo. Omawiamy szeroki zakres praktycznych celów stawianych metodom uczenia maszynowego i eksploracji danych, jak np. wykrywanie anomalii lub podobnych przypadków. Dyskutujemy na praktycznych przykładach pełen cykl życia danych i informacji w systemach przetwarzania i analizy danych, z uwzględnieniem odpowiednio w nie wkomponowanych rozwiązań bazujących na uczeniu maszynowym i eksploracji danych.

Strona przedmiotu
1000-2M22ETG brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-1M07ET brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład monograficzny - 30 godzin
Grupy przedmiotu

Skrócony opis

Na wykładzie zostaną omówione podstawowe pojęcia i twierdzenia Teorii Kategorii. Ostatnia część wykładu będzie poświęcona bardziej specyficznym zastosowaniom. Planuję omówić różne aspekty

toposów Grothendiecka.

Strona przedmiotu
1000-2M17FT brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

FinTech (Financial Technology) oznacza nowopowstający gałąź w branży IT, której celem jest użycie najnowszych technologii informacyjnych w celu usprawnienia usług finansowych. O ile nowinki technologiczne wprowadzane są od wielu lat małymi kroczkami przez wszystkie liczące się tradycyjne banki, o tyle firmy FinTech dążą do technologicznej rewolucji, która zupełnie zmieni bankowość jaką znamy. Produkty FinTech opierają się między innymi na technologiach Big Data, analizie sieci społecznych, algorytmach uczenia maszynowego, sztucznej intelligencji. Na przykład, w USA istnieją już firmy pożyczkowe, które badają zdolność kredytową klientów tylko i wyłącznie na podstawie analizy ich kont na popularnych portalach społecznościowych. Algorytmy służące do oceny zdolności kredytowej na podstawie aktywności on-line i znajomych zostały też opatentowane przez Facebook (od 2014 roku).

Strona przedmiotu
1000-135GEA brak brak
Zajęcia przedmiotu
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2023/24
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przedmiot stanowi wprowadzenie do geometrii algebraicznej. Na wykładzie zostaną wprowadzone rozmaitości algebraiczne i omówione zostaną ich podstawowe własności geometryczne. Pod koniec wykładu zostaną podane przykłady zastosowań geometrii algebraicznej (w zależności od preferencji wykładowcy).

Strona przedmiotu
ul. Banacha 2
02-097 Warszawa
tel: +48 22 55 44 214 https://www.mimuw.edu.pl/
kontakt deklaracja dostępności USOSweb 6.8.1.0-1729fa717 (2023-05-11)